Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 3/2017

28.10.2016

Performance and mechanism research of hierarchically structured Li-rich cathode materials for advanced lithium–ion batteries

verfasst von: Shaomeng Ma, Xianhua Hou, Yajie Li, Qiang Ru, Shejun Hu, Kwok-ho Lam

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The hierarchically structured cathode material Li1.165Mn0.501Ni0.167Co0.167O2 (LMNCO) is successfully synthesized via a facile ultrasonic-assisted co-precipitation method with a two-step heat treatment by adopting graphene and carbon nanotubes (CNTs) as functional framework and modified material. The structure and electrochemical performance degeneration mechanism were systematically investigated in this work. The obtained LMNCO microspheres possess a hierarchical nano-micropore structure assembled with nanosized building blocks, which originates from the oxidative decomposition of the transition metal carbonate precursor and carbonaceous materials accompanied with the release of CO2 (but still remain carbon residue). What’s more, the positive electrode exhibits enhanced specific capacities (276.6 mAh g−1 at 0.1 C), superior initial coulombic efficiency (80.3 %), remarkable rate capability (60.5 mAh g−1 at 10 C) and high Li+ diffusion coefficient (~10−9 cm2 s−1). The excellent performances can be attributed to the pore structure, small particle sizes, large specific surface area and enhanced electrical conductivity. (1 C = 250 mA g−1).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Ou, L. Yang, X.H. Xi, Flour-assisted simple fabrication of LiCoO2 with enhanced electrochemical performances for lithium ion batteries. J. Mater. Sci.: Mater. Electron. 27, 9008–9014 (2016) J. Ou, L. Yang, X.H. Xi, Flour-assisted simple fabrication of LiCoO2 with enhanced electrochemical performances for lithium ion batteries. J. Mater. Sci.: Mater. Electron. 27, 9008–9014 (2016)
2.
Zurück zum Zitat D.L. Ye, B. Wang, Y. Chen, G. Han, Z. Zhang, D. Hulicova-Jurcakova, J. Zou, L.Z. Wang, Understanding the stepwise capacity increase of high energy low-Co Li-rich cathode materials for lithium ion batteries. J. Mater. Chem. A 2, 18767–18774 (2014)CrossRef D.L. Ye, B. Wang, Y. Chen, G. Han, Z. Zhang, D. Hulicova-Jurcakova, J. Zou, L.Z. Wang, Understanding the stepwise capacity increase of high energy low-Co Li-rich cathode materials for lithium ion batteries. J. Mater. Chem. A 2, 18767–18774 (2014)CrossRef
3.
Zurück zum Zitat W.L. Zhang, X.H. Hou, Z.R. Lin, L.M. Yao, X.Y. Wang, Y.M. Gao, S.J. Hu, Hollow microspheres and nanoparticles MnFe2O4 as superior anode materials for lithium ion batteries. J. Mater. Sci. Mater. Electron. 26, 9535–9545 (2015)CrossRef W.L. Zhang, X.H. Hou, Z.R. Lin, L.M. Yao, X.Y. Wang, Y.M. Gao, S.J. Hu, Hollow microspheres and nanoparticles MnFe2O4 as superior anode materials for lithium ion batteries. J. Mater. Sci. Mater. Electron. 26, 9535–9545 (2015)CrossRef
4.
Zurück zum Zitat X. Jiang, Z.H. Wang, D. Rooney, X.X. Zhang, J. Feng, J.S. Qiao, W. Sun, K.N. Sun, A design strategy of large grain lithium-rich layered oxides for lithium-ion batteries cathode. Electrochim. Acta 160, 131–138 (2015)CrossRef X. Jiang, Z.H. Wang, D. Rooney, X.X. Zhang, J. Feng, J.S. Qiao, W. Sun, K.N. Sun, A design strategy of large grain lithium-rich layered oxides for lithium-ion batteries cathode. Electrochim. Acta 160, 131–138 (2015)CrossRef
5.
Zurück zum Zitat X.W. Miao, Y. Yan, C.G. Wang, L.L. Cui, J.H. Fang, G. Yang, Optimal microwave-assisted hydrothermal synthesis of nanosized xLi2MnO3·(1-x)LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion battery. J. Power Sources 247, 219–227 (2014)CrossRef X.W. Miao, Y. Yan, C.G. Wang, L.L. Cui, J.H. Fang, G. Yang, Optimal microwave-assisted hydrothermal synthesis of nanosized xLi2MnO3·(1-x)LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion battery. J. Power Sources 247, 219–227 (2014)CrossRef
6.
Zurück zum Zitat K.J. Harry, D.T. Hallinan, D.Y. Parkinson, A.A. MacDowell, N.P. Balsara, Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014)CrossRef K.J. Harry, D.T. Hallinan, D.Y. Parkinson, A.A. MacDowell, N.P. Balsara, Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater. 13, 69–73 (2014)CrossRef
7.
Zurück zum Zitat J.Y. Mun, J. Lee, T.J. Hwang, J.Y. Lee, H.N. Noh, W.C. Choi, Lithium difluoro(oxalate)borate for robust passivation of LiNi0.5Mn1.5O4 in lithium-ion batteries. J. Electroanal. Chem. 745, 8–13 (2015)CrossRef J.Y. Mun, J. Lee, T.J. Hwang, J.Y. Lee, H.N. Noh, W.C. Choi, Lithium difluoro(oxalate)borate for robust passivation of LiNi0.5Mn1.5O4 in lithium-ion batteries. J. Electroanal. Chem. 745, 8–13 (2015)CrossRef
8.
Zurück zum Zitat S.J. Shi, J.P. Tu, Y.Y. Tang, Y.X. Yu, Y.Q. Zhang, X.L. Wang, Synthesis and electrochemical performance of Li1.131Mn0.504Ni0.243Co0.122O2 cathode materials for lithium ion batteries via freeze drying. J. Power Sources 221, 300–307 (2013)CrossRef S.J. Shi, J.P. Tu, Y.Y. Tang, Y.X. Yu, Y.Q. Zhang, X.L. Wang, Synthesis and electrochemical performance of Li1.131Mn0.504Ni0.243Co0.122O2 cathode materials for lithium ion batteries via freeze drying. J. Power Sources 221, 300–307 (2013)CrossRef
9.
Zurück zum Zitat B. Ebin, G. Lindbergh, S. Gürmen, Preparation and electrochemical properties of nanocrystalline LiBxMn2-xO4 cathode particles for Li-ion batteries by ultrasonic spray pyrolysis method. J. Alloys Compd. 620, 399–406 (2015)CrossRef B. Ebin, G. Lindbergh, S. Gürmen, Preparation and electrochemical properties of nanocrystalline LiBxMn2-xO4 cathode particles for Li-ion batteries by ultrasonic spray pyrolysis method. J. Alloys Compd. 620, 399–406 (2015)CrossRef
10.
Zurück zum Zitat H.J. Yu, H.S. Zhou, High-energy cathode materials (Li2MnO3-LiMO2) for Lithium-Ion batteries. J. Phys. Chem. Lett. 4, 1268–1280 (2013)CrossRef H.J. Yu, H.S. Zhou, High-energy cathode materials (Li2MnO3-LiMO2) for Lithium-Ion batteries. J. Phys. Chem. Lett. 4, 1268–1280 (2013)CrossRef
11.
Zurück zum Zitat M.H. Shao, In situ microscopic studies on the structural and chemical behaviors of lithium-ion battery materials. J. Power Sources 270, 475–486 (2014)CrossRef M.H. Shao, In situ microscopic studies on the structural and chemical behaviors of lithium-ion battery materials. J. Power Sources 270, 475–486 (2014)CrossRef
12.
Zurück zum Zitat Q.G. Zhang, T.Y. Peng, D. Zhan, X.H. Hu, Synthesis and electrochemical property of xLi2MnO3·(1-x)LiMnO2 composite cathode materials derived from partially reduced Li2MnO3. J. Power Sources 250, 40–49 (2014)CrossRef Q.G. Zhang, T.Y. Peng, D. Zhan, X.H. Hu, Synthesis and electrochemical property of xLi2MnO3·(1-x)LiMnO2 composite cathode materials derived from partially reduced Li2MnO3. J. Power Sources 250, 40–49 (2014)CrossRef
13.
Zurück zum Zitat M. Gu, I. Belharouak, J.M. Zheng, H.M. Wu, J. Xiao, A. Genc, K. Amine, S. Thevuthasan, D.R. Baer, J.G. Zhang, N.D. Browning, J. Liu, C.M. Wang, Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7, 760–767 (2013)CrossRef M. Gu, I. Belharouak, J.M. Zheng, H.M. Wu, J. Xiao, A. Genc, K. Amine, S. Thevuthasan, D.R. Baer, J.G. Zhang, N.D. Browning, J. Liu, C.M. Wang, Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7, 760–767 (2013)CrossRef
14.
Zurück zum Zitat J. Zhang, Q.W. Lu, J.H. Fang, J.L. Wang, J. Yang, Y.N. NuLi, Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery. ACS Appl. Mater. Interfaces 6, 17965–17973 (2014)CrossRef J. Zhang, Q.W. Lu, J.H. Fang, J.L. Wang, J. Yang, Y.N. NuLi, Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery. ACS Appl. Mater. Interfaces 6, 17965–17973 (2014)CrossRef
15.
Zurück zum Zitat X.K. Yang, X.Y. Wang, G.S. Zou, L. Hu, H.B. Shu, S.Y. Yang, L. Liu, H. Hu, H. Yuan, B.N. Hu, Q.L. Wei, L.H. Yi, Spherical lithium-rich layered Li1.13[Mn0.534Ni0.233Co0.233]0.87O2 with concentration-gradient outer layer as high-performance cathodes for lithium ion batteries. J. Power Sources 232, 338–347 (2013)CrossRef X.K. Yang, X.Y. Wang, G.S. Zou, L. Hu, H.B. Shu, S.Y. Yang, L. Liu, H. Hu, H. Yuan, B.N. Hu, Q.L. Wei, L.H. Yi, Spherical lithium-rich layered Li1.13[Mn0.534Ni0.233Co0.233]0.87O2 with concentration-gradient outer layer as high-performance cathodes for lithium ion batteries. J. Power Sources 232, 338–347 (2013)CrossRef
16.
Zurück zum Zitat J. Li, R. Klöpsch, M.C. Stan, S. Nowak, M. Kunze, M. Winter, S. Passerini, Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability. J. Power Sources 196, 4821–4825 (2011)CrossRef J. Li, R. Klöpsch, M.C. Stan, S. Nowak, M. Kunze, M. Winter, S. Passerini, Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability. J. Power Sources 196, 4821–4825 (2011)CrossRef
17.
Zurück zum Zitat L. Li, L.C. Wang, X.X. Zhang, M. Xie, F. Wu, R.J. Chen, Structural and electrochemical study of hierarchical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 21939–21947 (2015)CrossRef L. Li, L.C. Wang, X.X. Zhang, M. Xie, F. Wu, R.J. Chen, Structural and electrochemical study of hierarchical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 21939–21947 (2015)CrossRef
18.
Zurück zum Zitat J.F. Li, S.L. Xiong, Y.R. Liu, Z.C. Ju, Y.T. Qian, Uniform LiNi1/3Co1/3Mn1/3O2 hollow microspheres: designed synthesis, topotactical structural transformation and their enhanced electrochemical performance. Nano Energy 2, 1249–1260 (2013)CrossRef J.F. Li, S.L. Xiong, Y.R. Liu, Z.C. Ju, Y.T. Qian, Uniform LiNi1/3Co1/3Mn1/3O2 hollow microspheres: designed synthesis, topotactical structural transformation and their enhanced electrochemical performance. Nano Energy 2, 1249–1260 (2013)CrossRef
19.
Zurück zum Zitat X.H. Zhang, D. Luo, G.S. Li, J. Zheng, C. Yu, X.F. Guan, C.C. Fu, X.D. Huang, L.P. Li, Self-adjusted oxygen-partial-pressure approach to the improved electrochemical performance of electrode Li[Li0.14Mn0.47Ni0.25Co0.14]O2 for lithium-ion batteries. J. Mater. Chem. A 1, 9721–9729 (2013)CrossRef X.H. Zhang, D. Luo, G.S. Li, J. Zheng, C. Yu, X.F. Guan, C.C. Fu, X.D. Huang, L.P. Li, Self-adjusted oxygen-partial-pressure approach to the improved electrochemical performance of electrode Li[Li0.14Mn0.47Ni0.25Co0.14]O2 for lithium-ion batteries. J. Mater. Chem. A 1, 9721–9729 (2013)CrossRef
20.
Zurück zum Zitat J. Wang, B. Qiu, H.L. Cao, Y.G. Xia, Z.P. Liu, Electrochemical properties of 0.6Li[Li1/3Mn2/3]O2·0.4LiNixMnyCo1-x-yO2 cathode materials for lithium-ion batteries. J. Power Sources 218, 128–133 (2012)CrossRef J. Wang, B. Qiu, H.L. Cao, Y.G. Xia, Z.P. Liu, Electrochemical properties of 0.6Li[Li1/3Mn2/3]O2·0.4LiNixMnyCo1-x-yO2 cathode materials for lithium-ion batteries. J. Power Sources 218, 128–133 (2012)CrossRef
21.
Zurück zum Zitat Y.R. Liang, L.Y. Chen, L.F. Cai, H. Liu, R.W. Fu, M.Q. Zhang, D.C. Wu, Strong contribution of pore morphology to the high-rate electrochemical performance of lithium-ion batteries. Chem. Commun. 52, 803–806 (2016)CrossRef Y.R. Liang, L.Y. Chen, L.F. Cai, H. Liu, R.W. Fu, M.Q. Zhang, D.C. Wu, Strong contribution of pore morphology to the high-rate electrochemical performance of lithium-ion batteries. Chem. Commun. 52, 803–806 (2016)CrossRef
22.
Zurück zum Zitat Y.T. Zhang, P.Y. Hou, E.L. Zhou, X.X. Shi, X.Q. Wang, D.W. Song, J. Guo, L.Q. Zhang, Pre-heat treatment of carbonate precursor firstly in nitrogen and then oxygen atmospheres: a new procedure to improve tap density of high-performance cathode material Li1.167(Ni0.139Co0.139Mn0.556)O2 for lithium ion batteries. J. Power Sources 292, 58–65 (2015)CrossRef Y.T. Zhang, P.Y. Hou, E.L. Zhou, X.X. Shi, X.Q. Wang, D.W. Song, J. Guo, L.Q. Zhang, Pre-heat treatment of carbonate precursor firstly in nitrogen and then oxygen atmospheres: a new procedure to improve tap density of high-performance cathode material Li1.167(Ni0.139Co0.139Mn0.556)O2 for lithium ion batteries. J. Power Sources 292, 58–65 (2015)CrossRef
23.
Zurück zum Zitat H. Liu, C.Y. Du, G.P. Yin, B. Song, P.J. Zuo, X.Q. Cheng, Y.L. Ma, Y.Z. Gao, An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries. J. Mater. Chem. A 2, 15640–15646 (2014)CrossRef H. Liu, C.Y. Du, G.P. Yin, B. Song, P.J. Zuo, X.Q. Cheng, Y.L. Ma, Y.Z. Gao, An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries. J. Mater. Chem. A 2, 15640–15646 (2014)CrossRef
24.
Zurück zum Zitat Q.R. Xue, J.L. Li, G.F. Xu, H.W. Zhou, X.D. Wang, F.Y. Kang, In situ polyaniline modified cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high rate capacity for lithium ion batteries. J. Mater. Chem. A 2, 18613–18623 (2014)CrossRef Q.R. Xue, J.L. Li, G.F. Xu, H.W. Zhou, X.D. Wang, F.Y. Kang, In situ polyaniline modified cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high rate capacity for lithium ion batteries. J. Mater. Chem. A 2, 18613–18623 (2014)CrossRef
25.
Zurück zum Zitat J.H. Yan, X.B. Liu, B.Y. Li, Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries. RSC Adv. 4, 63268–63284 (2014)CrossRef J.H. Yan, X.B. Liu, B.Y. Li, Recent progress in Li-rich layered oxides as cathode materials for Li-ion batteries. RSC Adv. 4, 63268–63284 (2014)CrossRef
26.
Zurück zum Zitat S.M. Ma, X.H. Hou, Z.R. Lin, Y.L. Huang, Y.M. Gao, S.J. Hu, J.D. Shen, One-pot facile co-precipitation synthesis of the layered Li1+x(Mn0.6Ni0.2Co0.2)1−xO2 as cathode materials with outstanding performance for lithium-ion batteries. J. Solid State Electrochem. 20, 95–103 (2016)CrossRef S.M. Ma, X.H. Hou, Z.R. Lin, Y.L. Huang, Y.M. Gao, S.J. Hu, J.D. Shen, One-pot facile co-precipitation synthesis of the layered Li1+x(Mn0.6Ni0.2Co0.2)1−xO2 as cathode materials with outstanding performance for lithium-ion batteries. J. Solid State Electrochem. 20, 95–103 (2016)CrossRef
27.
Zurück zum Zitat M. Gao, F. Lian, H.Q. Liu, C.J. Tian, L.L. Ma, W.Y. Yang, Synthesis and electrochemical performance of long lifespan Li-rich Li1+x(Ni0.37Mn0.63)1-xO2 cathode materials for lithium-ion batteries. Electrochim. Acta 95, 87–94 (2013)CrossRef M. Gao, F. Lian, H.Q. Liu, C.J. Tian, L.L. Ma, W.Y. Yang, Synthesis and electrochemical performance of long lifespan Li-rich Li1+x(Ni0.37Mn0.63)1-xO2 cathode materials for lithium-ion batteries. Electrochim. Acta 95, 87–94 (2013)CrossRef
28.
Zurück zum Zitat O. Toprakci, HAK. Toprakci, Y. Li, L.W. Ji, L.G. Xue, H. Lee, S. Zhang, X.W. Zhang, Synthesis and characterization of xLi2MnO3·(1 − x)LiMn1/3Ni1/3Co1/3O2 composite cathode materials for rechargeable lithium-ion batteries. J. Power Sources 241, 522–528 (2013)CrossRef O. Toprakci, HAK. Toprakci, Y. Li, L.W. Ji, L.G. Xue, H. Lee, S. Zhang, X.W. Zhang, Synthesis and characterization of xLi2MnO3·(1 − x)LiMn1/3Ni1/3Co1/3O2 composite cathode materials for rechargeable lithium-ion batteries. J. Power Sources 241, 522–528 (2013)CrossRef
29.
Zurück zum Zitat Z.Y. Wang, B. Li, J. Ma, D.G. Xia, Molten salt synthesis and high-performance of nanocrystalline Li-rich cathode materials. RSC Adv. 4, 15825–15829 (2014)CrossRef Z.Y. Wang, B. Li, J. Ma, D.G. Xia, Molten salt synthesis and high-performance of nanocrystalline Li-rich cathode materials. RSC Adv. 4, 15825–15829 (2014)CrossRef
30.
Zurück zum Zitat T.L. Zhao, S. Chen, L. Li, X.F. Zhang, R.J. Chen, I. Belharouak, F. Wu, K. Amine, Synthesis, characterization, and electrochemistry of cathode material Li[Li0.2Co0.13Ni0.13Mn0.54]O2 using organic chelating agents for lithium-ion batteries. J. Power Sources 228, 206–213 (2013)CrossRef T.L. Zhao, S. Chen, L. Li, X.F. Zhang, R.J. Chen, I. Belharouak, F. Wu, K. Amine, Synthesis, characterization, and electrochemistry of cathode material Li[Li0.2Co0.13Ni0.13Mn0.54]O2 using organic chelating agents for lithium-ion batteries. J. Power Sources 228, 206–213 (2013)CrossRef
31.
Zurück zum Zitat J.Q. Zhao, S. Aziz, Y. Wang, Hierarchical functional layers on high-capacity lithium-excess cathodes for superior lithium ion batteries. J. Power Sources 247, 95–104 (2014)CrossRef J.Q. Zhao, S. Aziz, Y. Wang, Hierarchical functional layers on high-capacity lithium-excess cathodes for superior lithium ion batteries. J. Power Sources 247, 95–104 (2014)CrossRef
32.
Zurück zum Zitat D. Luo, S.H. Fang, Q.H. Tian, L. Qu, S.M. Shen, L. Yang, S. Hdirano, Uniform LiMO2 assembled microspheres as superior cycle stability cathode materials for high energy and power Li-ion batteries. J. Mater. Chem. A 3, 22026–22030 (2015)CrossRef D. Luo, S.H. Fang, Q.H. Tian, L. Qu, S.M. Shen, L. Yang, S. Hdirano, Uniform LiMO2 assembled microspheres as superior cycle stability cathode materials for high energy and power Li-ion batteries. J. Mater. Chem. A 3, 22026–22030 (2015)CrossRef
33.
Zurück zum Zitat J. Meng, S.C. Zhang, X. Wei, P.H. Yang, S.B. Wang, J. Wang, H.L. Li, Y.L. Xing, G.R. Liu, Synthesis, structure and electrochemical properties of lithium-rich cathode material Li1.2Mn0.6Ni0.2O2 microspheres. RSC Adv 5, 81565–81572 (2015)CrossRef J. Meng, S.C. Zhang, X. Wei, P.H. Yang, S.B. Wang, J. Wang, H.L. Li, Y.L. Xing, G.R. Liu, Synthesis, structure and electrochemical properties of lithium-rich cathode material Li1.2Mn0.6Ni0.2O2 microspheres. RSC Adv 5, 81565–81572 (2015)CrossRef
34.
Zurück zum Zitat J.G. Yang, F.Y. Cheng, X.L. Zhang, H.Y. Gao, Z.L. Tao, J. Chen, Porous 0.2Li2MnO3·0.8LiNi0.5Mn0.5O2 nanorods as cathode materials for lithium-ion batteries. J. Mater. Chem. A 2, 1636–1640 (2014)CrossRef J.G. Yang, F.Y. Cheng, X.L. Zhang, H.Y. Gao, Z.L. Tao, J. Chen, Porous 0.2Li2MnO3·0.8LiNi0.5Mn0.5O2 nanorods as cathode materials for lithium-ion batteries. J. Mater. Chem. A 2, 1636–1640 (2014)CrossRef
35.
Zurück zum Zitat O. Akhavan, Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4, 4174–4180 (2010)CrossRef O. Akhavan, Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4, 4174–4180 (2010)CrossRef
36.
Zurück zum Zitat J.W. Mao, X.H. Hou, X.Y. Wang, G.N. He, Z.P. Shao, S.J. Hu, Corncob-shaped ZnFe2O4/C nanostructures for improved anode rate and cycle performance in lithium-ion batteries. RSC Adv. 5, 31807–31814 (2015)CrossRef J.W. Mao, X.H. Hou, X.Y. Wang, G.N. He, Z.P. Shao, S.J. Hu, Corncob-shaped ZnFe2O4/C nanostructures for improved anode rate and cycle performance in lithium-ion batteries. RSC Adv. 5, 31807–31814 (2015)CrossRef
37.
Zurück zum Zitat J. Wang, G.X. Yuan, M.H. Zhang, B. Qiu, Y.G. Xia, Z.P. Liu, The structure, morphology, and electrochemical properties of Li1+xNi1/6Co1/6Mn4/6O2.25+x/2 (0.1 ≤ x ≤ 0.7) cathode materials. Electrochim. Acta 66, 61–66 (2012)CrossRef J. Wang, G.X. Yuan, M.H. Zhang, B. Qiu, Y.G. Xia, Z.P. Liu, The structure, morphology, and electrochemical properties of Li1+xNi1/6Co1/6Mn4/6O2.25+x/2 (0.1 ≤ x ≤ 0.7) cathode materials. Electrochim. Acta 66, 61–66 (2012)CrossRef
38.
Zurück zum Zitat G.B. Liu, H. Liu, Y.F. Shi, The synthesis and electrochemical properties of xLi2MnO3·(1-x)MO2 (M = Mn1/3Ni1/3Fe1/3) via co-precipitation method. Electrochim. Acta 88, 112–116 (2013)CrossRef G.B. Liu, H. Liu, Y.F. Shi, The synthesis and electrochemical properties of xLi2MnO3·(1-x)MO2 (M = Mn1/3Ni1/3Fe1/3) via co-precipitation method. Electrochim. Acta 88, 112–116 (2013)CrossRef
39.
Zurück zum Zitat B.H. Song, M.O. Lai, Z.W. Liu, H.W. Liu, L. Lu, Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries. J. Mater. Chem. A 1, 9954–9965 (2013)CrossRef B.H. Song, M.O. Lai, Z.W. Liu, H.W. Liu, L. Lu, Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries. J. Mater. Chem. A 1, 9954–9965 (2013)CrossRef
40.
Zurück zum Zitat B.H. Song, H.W. Liu, Z.W. Liu, P.F. Xiao, M.O. Lai, L. Lu, High rate capability caused by surface cubic spinels in Li-rich layer-structured cathodes for Li-ion batteries. Sci. Rep. 3, 3094–3106 (2013) B.H. Song, H.W. Liu, Z.W. Liu, P.F. Xiao, M.O. Lai, L. Lu, High rate capability caused by surface cubic spinels in Li-rich layer-structured cathodes for Li-ion batteries. Sci. Rep. 3, 3094–3106 (2013)
41.
Zurück zum Zitat B.G. Xu, Z. Wang, Electrochemical activity and mechanism of disengagement of lithium for Li2MnO3. Metal. Func. Mater. 19, 40–45 (2012) B.G. Xu, Z. Wang, Electrochemical activity and mechanism of disengagement of lithium for Li2MnO3. Metal. Func. Mater. 19, 40–45 (2012)
42.
Zurück zum Zitat Y.L. Huang, X.H. Hou, S.M. Ma, X.L. Zou, Y.P. Wu, S.J. Hu, Z.P. Shao, X. Liu, Template GNL-assisted synthesis of porous Li1.2Mn0.534Ni0.133Co0.133O2: towards high performance cathodes for lithium ion batteries. RSC Adv. 5, 25258–25265 (2015)CrossRef Y.L. Huang, X.H. Hou, S.M. Ma, X.L. Zou, Y.P. Wu, S.J. Hu, Z.P. Shao, X. Liu, Template GNL-assisted synthesis of porous Li1.2Mn0.534Ni0.133Co0.133O2: towards high performance cathodes for lithium ion batteries. RSC Adv. 5, 25258–25265 (2015)CrossRef
43.
Zurück zum Zitat W.C. Wen, S.H. Chen, Y.Q. Fu, X.Y. Wang, H.B. Shu, A core-shell structure spinel cathode material with a concentration-gradient shell for high performance lithium-ion batteries. J. Power Sources 274, 219–228 (2015)CrossRef W.C. Wen, S.H. Chen, Y.Q. Fu, X.Y. Wang, H.B. Shu, A core-shell structure spinel cathode material with a concentration-gradient shell for high performance lithium-ion batteries. J. Power Sources 274, 219–228 (2015)CrossRef
Metadaten
Titel
Performance and mechanism research of hierarchically structured Li-rich cathode materials for advanced lithium–ion batteries
verfasst von
Shaomeng Ma
Xianhua Hou
Yajie Li
Qiang Ru
Shejun Hu
Kwok-ho Lam
Publikationsdatum
28.10.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 3/2017
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-5849-7

Weitere Artikel der Ausgabe 3/2017

Journal of Materials Science: Materials in Electronics 3/2017 Zur Ausgabe

Neuer Inhalt