Skip to main content
Erschienen in: Journal of Polymer Research 5/2021

01.05.2021 | ORIGINAL PAPER

Physicochemical characteristics of thermo-responsive gelatin membranes containing carboxymethyl chitosan and poly(N-isopropylacrylamide-co-acrylic acid)

verfasst von: Yi-Cheng Huang, Chia-Tien Lee, Trong-Ming Don

Erschienen in: Journal of Polymer Research | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Gelatin has many superior biological properties and can absorb a large volume of water to form hydrogels, making it a promising material for skin wound care. In this study, gel membranes were prepared based on gelatin and added with different amounts of the synthesized carboxymethyl chitosan (CMCS) and poly(N-isopropylacrylamide-co-acrylic acid) (P(NI-co-AA)) copolymer for providing antibacterial and thermo-responsive properties, respectively. The synthesized CMCS had a degree of carboxymethyl substitution at 0.77 and the P(NI-co-AA) had an AA content of 5.7 mol %. Both CMCS and P(NI-co-AA) had carboxylate groups that could further provide ionic-crosslinking sites for the membranes. Though the P(NI-co-AA) copolymer had a higher phase transition temperature than poly(N-isopropylacrylamide) (PNIPAAm) owing to its hydrophilic carboxylate groups, the prepared gelatin/CMCS/P(NI-co-AA) membranes had similar phase transition temperatures to the PNIPAAm at around 30.5 − 32.4 °C because of ionic crosslinking. Moreover, the equilibrium swelling ratio and water vapor transmission rate of the gel membranes were in the range of 769 − 1226% and 1678 − 2496 g/m2- day, respectively. These membranes could promote cell proliferation of human keratinocytes (HaCaT) and mouse fibroblasts (L-929), indicating they were non-toxic to the cells. They also had antimicrobial properties against S. aureus and E. coli, where the antibacterial efficacy increased with increasing the CMCS content. These hydrogel membranes had good biocompatibility, suitable swelling ratio and water vapor transmission rate, antibacterial and thermo-responsive properties. Therefore, they have potential to be applied as functional wound dressing material.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Rahman MM, Pervez S, Nesa B, Khan MA (2013) Preparation and characterization of porous scaffold composite films by blending chitosan and gelatin solutions for skin tissue engineering. Polym Int 62:79–86CrossRef Rahman MM, Pervez S, Nesa B, Khan MA (2013) Preparation and characterization of porous scaffold composite films by blending chitosan and gelatin solutions for skin tissue engineering. Polym Int 62:79–86CrossRef
2.
Zurück zum Zitat Chen K, Wang F, Liu S, Wu X, Xu L, Zhang D (2020) In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property. Int J Biol Macromol 148:501–509PubMedCrossRef Chen K, Wang F, Liu S, Wu X, Xu L, Zhang D (2020) In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property. Int J Biol Macromol 148:501–509PubMedCrossRef
3.
Zurück zum Zitat Park SN, Kim JK, Suh H (2004) Evaluation of antibiotic-loaded collagen-hyaluronic acid matrix as a skin substitute. Biomaterials 25:3689–3698PubMedCrossRef Park SN, Kim JK, Suh H (2004) Evaluation of antibiotic-loaded collagen-hyaluronic acid matrix as a skin substitute. Biomaterials 25:3689–3698PubMedCrossRef
4.
Zurück zum Zitat Ward AG, Courts A (1977) The science and technology of gelatin. Academic press, New York Ward AG, Courts A (1977) The science and technology of gelatin. Academic press, New York
5.
Zurück zum Zitat Ponticiello MS, Schinagl RM, Kadiyala S, Barry FP (2000) Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater 52:246–255CrossRef Ponticiello MS, Schinagl RM, Kadiyala S, Barry FP (2000) Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J Biomed Mater 52:246–255CrossRef
6.
Zurück zum Zitat Djagny KB, Wang Z, Xu S (2010) Gelatin: a valuable protein for food and pharmaceutical industries.vReview. Crit Rev Food Sci Nutr 41:481–492CrossRef Djagny KB, Wang Z, Xu S (2010) Gelatin: a valuable protein for food and pharmaceutical industries.vReview. Crit Rev Food Sci Nutr 41:481–492CrossRef
7.
Zurück zum Zitat Postlethwaite AE, Seyer JM, Kang AH (1978) Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. Proc Natl Acad Sci 75:871–875PubMedPubMedCentralCrossRef Postlethwaite AE, Seyer JM, Kang AH (1978) Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. Proc Natl Acad Sci 75:871–875PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Pankongadisak P, Ruktanonchai UR, Supaphol P, Suwantong O (2015) Development of silver nanoparticles-loaded calcium alginate beads embedded in gelatin scaffolds for use as wound dressings. Polym Int 64:275–283CrossRef Pankongadisak P, Ruktanonchai UR, Supaphol P, Suwantong O (2015) Development of silver nanoparticles-loaded calcium alginate beads embedded in gelatin scaffolds for use as wound dressings. Polym Int 64:275–283CrossRef
9.
Zurück zum Zitat Muzzarelli RA, El Mehtedi M, Bottegoni C, Gigante A (2016) Physical properties imparted by genipin to chitosan for tissue regeneration with human stem cells: A review. Int J Biol Macromol 93:1366–1381PubMedCrossRef Muzzarelli RA, El Mehtedi M, Bottegoni C, Gigante A (2016) Physical properties imparted by genipin to chitosan for tissue regeneration with human stem cells: A review. Int J Biol Macromol 93:1366–1381PubMedCrossRef
10.
Zurück zum Zitat Deepthi S, Venkatesan J, Kim S-K, Bumgardner JD, Jayakumar R (2016) An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int J Biol Macromol 93:1338–1353PubMedCrossRef Deepthi S, Venkatesan J, Kim S-K, Bumgardner JD, Jayakumar R (2016) An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int J Biol Macromol 93:1338–1353PubMedCrossRef
11.
Zurück zum Zitat Anitha A, Sowmya S, Kumar PS, Deepthi S, Chennazhi K, Ehrlich H et al (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667CrossRef Anitha A, Sowmya S, Kumar PS, Deepthi S, Chennazhi K, Ehrlich H et al (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667CrossRef
12.
Zurück zum Zitat Wu SJ, Don TM, Lin CW, Mi FL (2014) Delivery of berberine using chitosan/fucoidan-taurine conjugate nanoparticles for treatment of defective intestinal epithelial tight junction barrier. Mar Drugs 12:5677–5697PubMedPubMedCentralCrossRef Wu SJ, Don TM, Lin CW, Mi FL (2014) Delivery of berberine using chitosan/fucoidan-taurine conjugate nanoparticles for treatment of defective intestinal epithelial tight junction barrier. Mar Drugs 12:5677–5697PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Jayakumar R, Prabaharan M, Nair S, Tokura S, Tamura H, Selvamurugan N (2010) Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog in Mater Sci 5:675–709CrossRef Jayakumar R, Prabaharan M, Nair S, Tokura S, Tamura H, Selvamurugan N (2010) Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog in Mater Sci 5:675–709CrossRef
14.
Zurück zum Zitat Shariatinia Z (2018) Carboxymethyl chitosan: Properties and biomedical applications. Int J Biol Macromol 120:1406–1419PubMedCrossRef Shariatinia Z (2018) Carboxymethyl chitosan: Properties and biomedical applications. Int J Biol Macromol 120:1406–1419PubMedCrossRef
15.
Zurück zum Zitat Zhang C, Yang X, Hu W, Han X, Fan L, Tao S (2020) Preparation and characterization of carboxymethyl chitosan/collagen peptide/oxidized konjac composite hydrogel. Int J Biol Macromol 149:31–40PubMedCrossRef Zhang C, Yang X, Hu W, Han X, Fan L, Tao S (2020) Preparation and characterization of carboxymethyl chitosan/collagen peptide/oxidized konjac composite hydrogel. Int J Biol Macromol 149:31–40PubMedCrossRef
16.
Zurück zum Zitat Huang X, Zhang Y, Zhang X, Xu L, Chen X, Wei S et al (2013) Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing. Mater Sci Eng 33:4816–4824CrossRef Huang X, Zhang Y, Zhang X, Xu L, Chen X, Wei S et al (2013) Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing. Mater Sci Eng 33:4816–4824CrossRef
17.
Zurück zum Zitat Ratner BD, Hoffman AS (1976) Synthetic hydrogels for biomedical applications, hydrogels for medical and related applications, in ACS Symposium Series, Vol 31, Chapter 1, ACS Publications, 1–36 Ratner BD, Hoffman AS (1976) Synthetic hydrogels for biomedical applications, hydrogels for medical and related applications, in ACS Symposium Series, Vol 31, Chapter 1, ACS Publications, 1–36
18.
19.
Zurück zum Zitat Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339PubMedCrossRef Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339PubMedCrossRef
20.
Zurück zum Zitat Kamoun EA, Kenawy ES, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8:217–233PubMedPubMedCentralCrossRef Kamoun EA, Kenawy ES, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8:217–233PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Zha L, Banik B, Alexis F (2011) Stimulus responsive nanogels for drug delivery. Soft Matter 7:5908–5916CrossRef Zha L, Banik B, Alexis F (2011) Stimulus responsive nanogels for drug delivery. Soft Matter 7:5908–5916CrossRef
22.
Zurück zum Zitat Che Y, Li D, Liu Y, Yue Z, Zhao J, Ma Q et al (2018) Design and fabrication of a triple-responsive chitosan-based hydrogel with excellent mechanical properties for controlled drug delivery. J Polym Res 25:169CrossRef Che Y, Li D, Liu Y, Yue Z, Zhao J, Ma Q et al (2018) Design and fabrication of a triple-responsive chitosan-based hydrogel with excellent mechanical properties for controlled drug delivery. J Polym Res 25:169CrossRef
23.
Zurück zum Zitat Don TM, Lu KY, Lin LJ, Hsu CH, Wu JY, Mi FL (2017) Temperature/pH/Enzyme triple-responsive cationic protein/PAA-b-PNIPAAm nanogels for controlled anticancer drug and photosensitizer delivery against multidrug resistant breast cancer cells. Mol Pharm 14:4648–4660PubMedCrossRef Don TM, Lu KY, Lin LJ, Hsu CH, Wu JY, Mi FL (2017) Temperature/pH/Enzyme triple-responsive cationic protein/PAA-b-PNIPAAm nanogels for controlled anticancer drug and photosensitizer delivery against multidrug resistant breast cancer cells. Mol Pharm 14:4648–4660PubMedCrossRef
24.
Zurück zum Zitat Chee C, Rimmer S, Soutar I, Swanson L (2001) Fluorescence investigations of the thermally induced conformational transition of poly (N-isopropylacrylamide). Polymer 42:5079–5087CrossRef Chee C, Rimmer S, Soutar I, Swanson L (2001) Fluorescence investigations of the thermally induced conformational transition of poly (N-isopropylacrylamide). Polymer 42:5079–5087CrossRef
25.
Zurück zum Zitat Li H, Williams GR, Wu J, Wang H, Sun X, Zhu LM et al (2017) Poly(N-isopropylacrylamide)/poly(l-lactic acid-co-ɛ-caprolactone) fibers loaded with ciprofloxacin as wound dressing materials. Mater Sci Eng 79:245–254CrossRef Li H, Williams GR, Wu J, Wang H, Sun X, Zhu LM et al (2017) Poly(N-isopropylacrylamide)/poly(l-lactic acid-co-ɛ-caprolactone) fibers loaded with ciprofloxacin as wound dressing materials. Mater Sci Eng 79:245–254CrossRef
26.
Zurück zum Zitat Zubik K, Singhsa P, Wang Y, Manuspiya H, Narain R (2017) Thermo-responsive poly(N-isopropylacrylamide)-cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers 9:119PubMedCentralCrossRef Zubik K, Singhsa P, Wang Y, Manuspiya H, Narain R (2017) Thermo-responsive poly(N-isopropylacrylamide)-cellulose nanocrystals hybrid hydrogels for wound dressing. Polymers 9:119PubMedCentralCrossRef
27.
Zurück zum Zitat Jiang B, Larson JC, Drapala PW, Pérez-Luna VH, Kang-Mieler JJ, Brey EM (2012) Investigation of lysine acrylate containing poly (N-isopropylacrylamide) hydrogels as wound dressings in normal and infected wounds. J Biomed Mater Res B Appl Biomater 100:668–676PubMedCrossRef Jiang B, Larson JC, Drapala PW, Pérez-Luna VH, Kang-Mieler JJ, Brey EM (2012) Investigation of lysine acrylate containing poly (N-isopropylacrylamide) hydrogels as wound dressings in normal and infected wounds. J Biomed Mater Res B Appl Biomater 100:668–676PubMedCrossRef
28.
Zurück zum Zitat Reddy TT, Kano A, Maruyama A, Hadano M, Takahara A (2009) Synthesis and characterization of semi-interpenetrating polymer networks based on polyurethane and N-isopropylacrylamide for wound dressing. J Biomed Mater Res B Appl Biomater 88:32–40PubMedCrossRef Reddy TT, Kano A, Maruyama A, Hadano M, Takahara A (2009) Synthesis and characterization of semi-interpenetrating polymer networks based on polyurethane and N-isopropylacrylamide for wound dressing. J Biomed Mater Res B Appl Biomater 88:32–40PubMedCrossRef
29.
Zurück zum Zitat Reddy TT, Kano A, Maruyama A, Hadano M, Takahara A (2008) Thermosensitive transparent semi-interpenetrating polymer networks for wound dressing and cell adhesion control. Biomacromol 9:1313–1321CrossRef Reddy TT, Kano A, Maruyama A, Hadano M, Takahara A (2008) Thermosensitive transparent semi-interpenetrating polymer networks for wound dressing and cell adhesion control. Biomacromol 9:1313–1321CrossRef
30.
Zurück zum Zitat Lin SY, Chen KS, Liang RC (2001) Design and evaluation of drug-loaded wound dressing having thermoresponsive, adhesive, absorptive and easy peeling properties. Biomaterials 22:2999–3004PubMedCrossRef Lin SY, Chen KS, Liang RC (2001) Design and evaluation of drug-loaded wound dressing having thermoresponsive, adhesive, absorptive and easy peeling properties. Biomaterials 22:2999–3004PubMedCrossRef
31.
Zurück zum Zitat Kuo CY, Don TM, Hsu SC, Lee CF, Chiu WY, Huang CY (2016) Thermo- and pH-induced self-assembly of P (AA-b-NIPAAm-b-AA) triblock copolymers synthesized via RAFT polymerization. J Polym Sci Polym Chem 54:1109–1118CrossRef Kuo CY, Don TM, Hsu SC, Lee CF, Chiu WY, Huang CY (2016) Thermo- and pH-induced self-assembly of P (AA-b-NIPAAm-b-AA) triblock copolymers synthesized via RAFT polymerization. J Polym Sci Polym Chem 54:1109–1118CrossRef
32.
Zurück zum Zitat Park JS, Yang HN, Woo DG, Jeon SY, Park KH (2013) Poly(N-isopropylacrylamide-co-acrylic acid) nanogels for tracing and delivering genes to human mesenchymal stem cells. Biomaterials 34:8819–8834PubMedCrossRef Park JS, Yang HN, Woo DG, Jeon SY, Park KH (2013) Poly(N-isopropylacrylamide-co-acrylic acid) nanogels for tracing and delivering genes to human mesenchymal stem cells. Biomaterials 34:8819–8834PubMedCrossRef
33.
Zurück zum Zitat Gao Y, Ahiabu A, Serpe MJ (2014) Controlled drug release from the aggregation–disaggregation behavior of pH-responsive microgels. ACS Appl Mater Interfaces 6:13749–13756PubMedCrossRef Gao Y, Ahiabu A, Serpe MJ (2014) Controlled drug release from the aggregation–disaggregation behavior of pH-responsive microgels. ACS Appl Mater Interfaces 6:13749–13756PubMedCrossRef
34.
Zurück zum Zitat Lin YJ, Lee GH, Chou CW, Chen YP, Wu TH, Lin HR (2015) Stimulation of wound healing by PU/hydrogel composites containing fibroblast growth factor-2. J Mater Chem 3:1931–1941 Lin YJ, Lee GH, Chou CW, Chen YP, Wu TH, Lin HR (2015) Stimulation of wound healing by PU/hydrogel composites containing fibroblast growth factor-2. J Mater Chem 3:1931–1941
35.
Zurück zum Zitat Choudhary M, Chhabra P, Tyagi A, Singh H (2021) Scar free healing of full thickness diabetic wounds: A unique combination of silver nanoparticles as antimicrobial agent, calcium alginate nanoparticles as hemostatic agent, fresh blood as nutrient/growth factor supplier and chitosan as base matrix. Inter J Biol Macromol 178:41–52CrossRef Choudhary M, Chhabra P, Tyagi A, Singh H (2021) Scar free healing of full thickness diabetic wounds: A unique combination of silver nanoparticles as antimicrobial agent, calcium alginate nanoparticles as hemostatic agent, fresh blood as nutrient/growth factor supplier and chitosan as base matrix. Inter J Biol Macromol 178:41–52CrossRef
36.
Zurück zum Zitat Tao G, Cai R, Wang Y, Zuo H, He H (2021) Fabrication of antibacterial sericin based hydrogel as an injectable and mouldable wound dressing. Mater Sci Eng C 119:111597CrossRef Tao G, Cai R, Wang Y, Zuo H, He H (2021) Fabrication of antibacterial sericin based hydrogel as an injectable and mouldable wound dressing. Mater Sci Eng C 119:111597CrossRef
37.
Zurück zum Zitat Sadeghi D, Solouk A, Samadikuchaksaraei A, Seifalian AM (2021) Preparation of internally-crosslinked alginate microspheres: Optimization of process parameters and study of pH-responsive behaviors. Carbohydr Polym 255:117336PubMedCrossRef Sadeghi D, Solouk A, Samadikuchaksaraei A, Seifalian AM (2021) Preparation of internally-crosslinked alginate microspheres: Optimization of process parameters and study of pH-responsive behaviors. Carbohydr Polym 255:117336PubMedCrossRef
38.
Zurück zum Zitat Masood R, Anam Khubaib M, Hussain T, Raza ZA (2021) Silver-containing polysaccharide-based tricomponent antibacterial fibres for wound care applications. J Wound Care 30(1):81–88PubMedCrossRef Masood R, Anam Khubaib M, Hussain T, Raza ZA (2021) Silver-containing polysaccharide-based tricomponent antibacterial fibres for wound care applications. J Wound Care 30(1):81–88PubMedCrossRef
39.
Zurück zum Zitat Nokhodchi A, Tailor A (2004) In situ cross-linking of sodium alginate with calcium and aluminum ions to sustain the release of theophylline from polymeric matrices. Il Farmaco 59:999–1004PubMedCrossRef Nokhodchi A, Tailor A (2004) In situ cross-linking of sodium alginate with calcium and aluminum ions to sustain the release of theophylline from polymeric matrices. Il Farmaco 59:999–1004PubMedCrossRef
40.
Zurück zum Zitat Tarighi P, Khoroushi M (2014) A review on common chemical hemostatic agents in restorative dentistry. Dent Res J 11(4):423–428 Tarighi P, Khoroushi M (2014) A review on common chemical hemostatic agents in restorative dentistry. Dent Res J 11(4):423–428
41.
Zurück zum Zitat Palm MD, Altman JS (2008) Topical hemostatic agents: a review. Dermatol Surg 34(4):431–445PubMed Palm MD, Altman JS (2008) Topical hemostatic agents: a review. Dermatol Surg 34(4):431–445PubMed
43.
Zurück zum Zitat Shen YH, Dempsey BA (1998) Synthesis and speciation of polyaluminum chloride for water treatment. Environ Int 24(8):899–910CrossRef Shen YH, Dempsey BA (1998) Synthesis and speciation of polyaluminum chloride for water treatment. Environ Int 24(8):899–910CrossRef
44.
Zurück zum Zitat Nouri S, Sharif MR, Panahi Y, Ghanei M, Jamali B (2015) Efficacy and safety of aluminum chloride in controlling external hemorrhage: an animal model study. Iran Red Crescent Med J 17:e19714PubMedPubMedCentralCrossRef Nouri S, Sharif MR, Panahi Y, Ghanei M, Jamali B (2015) Efficacy and safety of aluminum chloride in controlling external hemorrhage: an animal model study. Iran Red Crescent Med J 17:e19714PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Tai HY, Chou SH, Cheng LP, Yu HT, Don TM (2012) Asymmetric composite membranes from chitosan and tricalcium phosphate useful for guided bone regeneration. J Biomater Sci Polym Ed 23:1153–1170PubMed Tai HY, Chou SH, Cheng LP, Yu HT, Don TM (2012) Asymmetric composite membranes from chitosan and tricalcium phosphate useful for guided bone regeneration. J Biomater Sci Polym Ed 23:1153–1170PubMed
46.
Zurück zum Zitat Trombotto S, Ladavière C, Delolme F, Domard A (2008) Chemical preparation and structural characterization of a homogeneous series of chitin/chitosan oligomers. Biomacromol 9:1731–1738CrossRef Trombotto S, Ladavière C, Delolme F, Domard A (2008) Chemical preparation and structural characterization of a homogeneous series of chitin/chitosan oligomers. Biomacromol 9:1731–1738CrossRef
47.
Zurück zum Zitat Rinaudo M, Le Dung P, Gey C, Milas M (1992) Substituent distribution on O, N-carboxymethylchitosans by 1H and 13C NMR. Int J Biol Macromol 14:122–128PubMedCrossRef Rinaudo M, Le Dung P, Gey C, Milas M (1992) Substituent distribution on O, N-carboxymethylchitosans by 1H and 13C NMR. Int J Biol Macromol 14:122–128PubMedCrossRef
48.
Zurück zum Zitat Philippova OE, Hourdet D, Audebert R, Khokhlov AR (1997) pH-responsive gels of hydrophobically modified poly (acrylic acid). Macromolecules 30:8278–8285CrossRef Philippova OE, Hourdet D, Audebert R, Khokhlov AR (1997) pH-responsive gels of hydrophobically modified poly (acrylic acid). Macromolecules 30:8278–8285CrossRef
49.
Zurück zum Zitat Nagahama H, Maeda H, Kashiki T, Jayakuma R, Furuike T, Tamura H (2009) Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohydr Polym 76:255–260CrossRef Nagahama H, Maeda H, Kashiki T, Jayakuma R, Furuike T, Tamura H (2009) Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohydr Polym 76:255–260CrossRef
50.
Zurück zum Zitat Lamke LO, Nilsson GE, Reithner HL (1977) The evaporative water loss from burns and the water-vapour permeability of grafts and artificial membranes used in the treatment of burns. Burns 3:159CrossRef Lamke LO, Nilsson GE, Reithner HL (1977) The evaporative water loss from burns and the water-vapour permeability of grafts and artificial membranes used in the treatment of burns. Burns 3:159CrossRef
51.
Zurück zum Zitat Kim I, Yoo M, Seo J, Park S, Na H, Lee H et al (2007) Evaluation of semi-interpenetrating polymer networks composed of chitosan and poloxamer for wound dressing application. Int J Pharm 341:35–43PubMedCrossRef Kim I, Yoo M, Seo J, Park S, Na H, Lee H et al (2007) Evaluation of semi-interpenetrating polymer networks composed of chitosan and poloxamer for wound dressing application. Int J Pharm 341:35–43PubMedCrossRef
52.
Zurück zum Zitat Gupta VB, Anitha S, Hegde M, Zecca L, Garruto R, Ravid R et al (2005) Aluminium in Alzheimer’s disease: are we still at a crossroad? Cell Mol Life Sci 62:143–158PubMedCrossRef Gupta VB, Anitha S, Hegde M, Zecca L, Garruto R, Ravid R et al (2005) Aluminium in Alzheimer’s disease: are we still at a crossroad? Cell Mol Life Sci 62:143–158PubMedCrossRef
53.
Zurück zum Zitat Goullé J-P, Grangeot-Keros L (2020) Aluminum and vaccines: current state of knowledge. Med Mal Infect 50:16–21PubMedCrossRef Goullé J-P, Grangeot-Keros L (2020) Aluminum and vaccines: current state of knowledge. Med Mal Infect 50:16–21PubMedCrossRef
54.
Zurück zum Zitat Sudarshan N, Hoover D, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6:257–272CrossRef Sudarshan N, Hoover D, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6:257–272CrossRef
55.
Zurück zum Zitat Helander I, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol 71:235–244PubMedCrossRef Helander I, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol 71:235–244PubMedCrossRef
Metadaten
Titel
Physicochemical characteristics of thermo-responsive gelatin membranes containing carboxymethyl chitosan and poly(N-isopropylacrylamide-co-acrylic acid)
verfasst von
Yi-Cheng Huang
Chia-Tien Lee
Trong-Ming Don
Publikationsdatum
01.05.2021
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 5/2021
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-021-02534-w

Weitere Artikel der Ausgabe 5/2021

Journal of Polymer Research 5/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.