Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2018

06.08.2018

Physics-based Constitutive Model for the Hot Deformation of 2Cr11Mo1VNbN Martensitic Stainless Steel

verfasst von: Rui Wang, Menghan Wang, Zhi Li, Cheng Lu

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The hot deformation behavior of 2Cr11Mo1VNbN martensitic stainless steel is investigated through isothermal compression tests between 1173 and 1423 K with strain rates of 0.005-5 s−1. Based on experimental results, the work hardening–dynamic recovery stage and dynamic softening stage are evaluated, and a couple-stage constitutive model is developed to describe the work hardening–dynamic recovery and dynamic softening behaviors. Phenomenological constitutive models, which consider temperature, strain and strain rate, are established. A comparison between the predicted and experimental flow stress values indicates that the established models accurately describe the hot deformation behaviors for the studied supercritical steel.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. Vilamosa, A.H. Clausen, T. Børvik, B. Holmedal, and O.S. Hopperstad, A physically-Based Constitutive Model Applied to AA6082 Aluminium Alloy at Large Strains, High Strain Rates and Elevated Temperatures, Mater. Des., 2016, 103, p 391–405CrossRef V. Vilamosa, A.H. Clausen, T. Børvik, B. Holmedal, and O.S. Hopperstad, A physically-Based Constitutive Model Applied to AA6082 Aluminium Alloy at Large Strains, High Strain Rates and Elevated Temperatures, Mater. Des., 2016, 103, p 391–405CrossRef
2.
Zurück zum Zitat A. Momeni, K. Dehghani, and G.R. Ebrahimi, Modeling the Initiation of Dynamic Recrystallization Using a Dynamic Recovery Model, J. Alloys Compd., 2011, 509, p 9387–9393CrossRef A. Momeni, K. Dehghani, and G.R. Ebrahimi, Modeling the Initiation of Dynamic Recrystallization Using a Dynamic Recovery Model, J. Alloys Compd., 2011, 509, p 9387–9393CrossRef
3.
Zurück zum Zitat E. Farabi, A. Zarei-Hanzaki, and H.R. Abedi, High Temperature Formability Prediction of Dual Phase Brass Using Phenomenological and Physical Constitutive Models, J. Mater. Eng. Perform., 2015, 24, p 209–220CrossRef E. Farabi, A. Zarei-Hanzaki, and H.R. Abedi, High Temperature Formability Prediction of Dual Phase Brass Using Phenomenological and Physical Constitutive Models, J. Mater. Eng. Perform., 2015, 24, p 209–220CrossRef
4.
Zurück zum Zitat B. Thossatheppitak, V. Uthaisangsuk, P. Mungsuntisuk, S. Suranuntchai, and A. Manonukul, Flow Behavior of Nickel Aluminium Bronze Under Hot Deformation, Mater. Sci. Eng. A, 2014, 604, p 183–190CrossRef B. Thossatheppitak, V. Uthaisangsuk, P. Mungsuntisuk, S. Suranuntchai, and A. Manonukul, Flow Behavior of Nickel Aluminium Bronze Under Hot Deformation, Mater. Sci. Eng. A, 2014, 604, p 183–190CrossRef
5.
Zurück zum Zitat J.Q. Zhang, H.S. Di, and X.Y. Wang, Flow Softening of 253MA Austenitic Stainless Steel During Hot Compression at Higher Strain Rates, Mater. Sci. Eng. A, 2016, 650, p 483–491CrossRef J.Q. Zhang, H.S. Di, and X.Y. Wang, Flow Softening of 253MA Austenitic Stainless Steel During Hot Compression at Higher Strain Rates, Mater. Sci. Eng. A, 2016, 650, p 483–491CrossRef
6.
Zurück zum Zitat P. Cizek, The Microstructure Evolution and Softening Processes During High-Temperature Deformation of a 21Cr-10Ni-3Mo Duplex Stainless Steel, Acta Mater., 2016, 106, p 129–143CrossRef P. Cizek, The Microstructure Evolution and Softening Processes During High-Temperature Deformation of a 21Cr-10Ni-3Mo Duplex Stainless Steel, Acta Mater., 2016, 106, p 129–143CrossRef
7.
Zurück zum Zitat K.K. Li, M.S. Chen, Y.C. Lin, and W.Q. Yuan, Microstructural Evolution of an Aged Ni-Based Superalloy Under Two-Stage Hot Compression with Different Strain Rates, Mater. Des., 2016, 111, p 344–352CrossRef K.K. Li, M.S. Chen, Y.C. Lin, and W.Q. Yuan, Microstructural Evolution of an Aged Ni-Based Superalloy Under Two-Stage Hot Compression with Different Strain Rates, Mater. Des., 2016, 111, p 344–352CrossRef
8.
Zurück zum Zitat S.S.S. Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, and U. Borah, Constitutive Modeling for Predicting Peak Stress Characteristics During Hot Deformation of Hot Isostatically Processed Nickel-Base Superalloy, J. Mater. Sci., 2015, 50, p 6444–6456CrossRef S.S.S. Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, and U. Borah, Constitutive Modeling for Predicting Peak Stress Characteristics During Hot Deformation of Hot Isostatically Processed Nickel-Base Superalloy, J. Mater. Sci., 2015, 50, p 6444–6456CrossRef
9.
Zurück zum Zitat S.L. Semiatin and J.J. Jonas, Formability and Workability of Metals, Plastic Instability and Flow Localization, American Society for Metals, Metals Park, 1984 S.L. Semiatin and J.J. Jonas, Formability and Workability of Metals, Plastic Instability and Flow Localization, American Society for Metals, Metals Park, 1984
10.
Zurück zum Zitat K. Graetz, C. Miessen, and G. Gottstein, Analysis of Steady-State Dynamic Recrystallization, Acta Mater., 2014, 67, p 58–66CrossRef K. Graetz, C. Miessen, and G. Gottstein, Analysis of Steady-State Dynamic Recrystallization, Acta Mater., 2014, 67, p 58–66CrossRef
11.
Zurück zum Zitat A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60, Acta Mater., 2001, 49, p 1199–1207CrossRef A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60, Acta Mater., 2001, 49, p 1199–1207CrossRef
12.
Zurück zum Zitat J.Q. Zhang, H.S. Di, H.T. Wang, K. Mao, T.J. Ma, and Y. Cao, Hot Deformation Behavior of Ti-15-3 Titanium Alloy: A Study Using Processing Maps, Activation Energy Map, and Zener–Hollomon Parameter Map, J. Mater. Sci., 2012, 47, p 4000–4011CrossRef J.Q. Zhang, H.S. Di, H.T. Wang, K. Mao, T.J. Ma, and Y. Cao, Hot Deformation Behavior of Ti-15-3 Titanium Alloy: A Study Using Processing Maps, Activation Energy Map, and Zener–Hollomon Parameter Map, J. Mater. Sci., 2012, 47, p 4000–4011CrossRef
13.
Zurück zum Zitat Y.C. Lin, F.Q. Nong, X.M. Chen, D.D. Chen, and M.S. Chen, Microstructural Evolution and Constitutive Models to Predict Hot Deformation Behaviors of a Nickel-Based Superalloy, Vacuum, 2017, 137, p 104–114CrossRef Y.C. Lin, F.Q. Nong, X.M. Chen, D.D. Chen, and M.S. Chen, Microstructural Evolution and Constitutive Models to Predict Hot Deformation Behaviors of a Nickel-Based Superalloy, Vacuum, 2017, 137, p 104–114CrossRef
14.
Zurück zum Zitat N. Haghdadi, D. Martin, and P. Hodgson, Physically-Based Constitutive Modelling of Hot Deformation Behavior in a LDX 2101 Duplex Stainless Steel, Mater. Des., 2016, 106, p 420–427CrossRef N. Haghdadi, D. Martin, and P. Hodgson, Physically-Based Constitutive Modelling of Hot Deformation Behavior in a LDX 2101 Duplex Stainless Steel, Mater. Des., 2016, 106, p 420–427CrossRef
15.
Zurück zum Zitat S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, and K.V. Kasiviswanathan, Constitutive Equations to Predict High Temperature Flow Stress in a Ti-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 500, p 114–121CrossRef S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, and K.V. Kasiviswanathan, Constitutive Equations to Predict High Temperature Flow Stress in a Ti-Modified Austenitic Stainless Steel, Mater. Sci. Eng. A, 2009, 500, p 114–121CrossRef
16.
Zurück zum Zitat A.K. Guptaa, V.K. Anirudh, and S.K. Singh, Constitutive Models to Predict Flow Stress in Austenitic Stainless Steel 316 at Elevated Temperatures, Mater. Des., 2013, 43, p 410–418CrossRef A.K. Guptaa, V.K. Anirudh, and S.K. Singh, Constitutive Models to Predict Flow Stress in Austenitic Stainless Steel 316 at Elevated Temperatures, Mater. Des., 2013, 43, p 410–418CrossRef
17.
Zurück zum Zitat A. Momeni and K. Dehghani, Characterization of Hot Deformation Behavior of 410 Martensitic Stainless Steel Using Constitutive Equations and Processing Maps, Mater. Sci. Eng. A, 2010, 527, p 5467–5473CrossRef A. Momeni and K. Dehghani, Characterization of Hot Deformation Behavior of 410 Martensitic Stainless Steel Using Constitutive Equations and Processing Maps, Mater. Sci. Eng. A, 2010, 527, p 5467–5473CrossRef
18.
Zurück zum Zitat F. Ren, J. Chen, and F. Chen, Constitutive Modeling of Hot Deformation Behavior of X20Cr13 Martensitic Stainless Steel with Strain Effect, Trans. Nonferr. Metal. Soc., 2014, 24, p 1407–1413CrossRef F. Ren, J. Chen, and F. Chen, Constitutive Modeling of Hot Deformation Behavior of X20Cr13 Martensitic Stainless Steel with Strain Effect, Trans. Nonferr. Metal. Soc., 2014, 24, p 1407–1413CrossRef
19.
Zurück zum Zitat S.M. Mohseni, A.B. Phillion, and D.M. Maijer, Modelling the Constitutive Behaviour of Aluminium Alloy B206 in the as-Cast and Artificially Aged States, Mater. Sci. Eng. A, 2016, 649, p 382–389CrossRef S.M. Mohseni, A.B. Phillion, and D.M. Maijer, Modelling the Constitutive Behaviour of Aluminium Alloy B206 in the as-Cast and Artificially Aged States, Mater. Sci. Eng. A, 2016, 649, p 382–389CrossRef
20.
Zurück zum Zitat Z.Y. Zeng, L.Q. Chen, F.X. Zhu, and X.H. Liu, Dynamic Recrystallization Behavior of a Heat-Resistant Martensitic Stainless Steel 403Nb During Hot Deformation, J. Mater. Sci. Technol., 2011, 27, p 913–919CrossRef Z.Y. Zeng, L.Q. Chen, F.X. Zhu, and X.H. Liu, Dynamic Recrystallization Behavior of a Heat-Resistant Martensitic Stainless Steel 403Nb During Hot Deformation, J. Mater. Sci. Technol., 2011, 27, p 913–919CrossRef
21.
Zurück zum Zitat A. Abbasi-Bani, A. Zarei-Hanzaki, M.H. Pishbin, and N. Haghdadi, A comparative Study on the Capability of Johnson-Cook and Arrhenius-Type Constitutive Equations to Describe the Flow Behavior of Mg-6Al-1Zn Alloy, Mech. Mater., 2014, 71, p 52–61CrossRef A. Abbasi-Bani, A. Zarei-Hanzaki, M.H. Pishbin, and N. Haghdadi, A comparative Study on the Capability of Johnson-Cook and Arrhenius-Type Constitutive Equations to Describe the Flow Behavior of Mg-6Al-1Zn Alloy, Mech. Mater., 2014, 71, p 52–61CrossRef
22.
Zurück zum Zitat H.Y. Li, Y.H. Li, X.F. Wang, J.J. Liu, and Y. Wu, A comparative Study on Modified Johnson Cook, Modified Zerilli–Armstrong and Arrhenius-Type Constitutive Models to Predict the Hot Deformation Behavior in 28CrMnMoV Steel, Mater. Des., 2013, 49, p 493–501CrossRef H.Y. Li, Y.H. Li, X.F. Wang, J.J. Liu, and Y. Wu, A comparative Study on Modified Johnson Cook, Modified Zerilli–Armstrong and Arrhenius-Type Constitutive Models to Predict the Hot Deformation Behavior in 28CrMnMoV Steel, Mater. Des., 2013, 49, p 493–501CrossRef
23.
Zurück zum Zitat R. Bobbili and V. Madhu, Constitutive Modeling of Hot Deformation Behavior of High-Strength Armor Steel, J. Mater. Eng. Perform., 2016, 25, p 1829–1838CrossRef R. Bobbili and V. Madhu, Constitutive Modeling of Hot Deformation Behavior of High-Strength Armor Steel, J. Mater. Eng. Perform., 2016, 25, p 1829–1838CrossRef
24.
Zurück zum Zitat Q.C. Fan, X.Q. Jiang, Z.H. Zhou, W. Ji, and H.Q. Cao, Constitutive Relationship and Hot Deformation Behavior of Armco-Type Pure Iron for a Wide Range of Temperature, Mater. Des., 2015, 65, p 193–203CrossRef Q.C. Fan, X.Q. Jiang, Z.H. Zhou, W. Ji, and H.Q. Cao, Constitutive Relationship and Hot Deformation Behavior of Armco-Type Pure Iron for a Wide Range of Temperature, Mater. Des., 2015, 65, p 193–203CrossRef
25.
Zurück zum Zitat A. Hajari, M. Morakabati, S.M. Abbasi, and H. Badri, Constitutive Modeling for High-Temperature Flow Behavior of Ti-6242S Alloy, Mater. Sci. Eng. A, 2017, 681, p 103–113CrossRef A. Hajari, M. Morakabati, S.M. Abbasi, and H. Badri, Constitutive Modeling for High-Temperature Flow Behavior of Ti-6242S Alloy, Mater. Sci. Eng. A, 2017, 681, p 103–113CrossRef
26.
Zurück zum Zitat X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, and M. He, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy During Hot Deformation, Mater. Des., 2014, 57, p 568–577CrossRef X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, and M. He, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy During Hot Deformation, Mater. Des., 2014, 57, p 568–577CrossRef
27.
Zurück zum Zitat A. Laasraoui and J. Jonas, Prediction of Steel Flow Stresses at High Temperature and Strain Rates, Metall. Trans. A, 1991, 22, p 1545–1558CrossRef A. Laasraoui and J. Jonas, Prediction of Steel Flow Stresses at High Temperature and Strain Rates, Metall. Trans. A, 1991, 22, p 1545–1558CrossRef
28.
Zurück zum Zitat A. Yoshie, H. Morikawa, Y. Onoe, and K. Itoh, Formulation of Static Recrystallization of Austenite in Hot Rolling Process of Steel Plate, Trans. ISIJ, 1987, 27, p 425–431CrossRef A. Yoshie, H. Morikawa, Y. Onoe, and K. Itoh, Formulation of Static Recrystallization of Austenite in Hot Rolling Process of Steel Plate, Trans. ISIJ, 1987, 27, p 425–431CrossRef
29.
Zurück zum Zitat Y.G. Liu, M.Q. Li, and J. Luo, The Modeling of Dynamic Recrystallization in the Isothermal Compression of 300M Steel, Mater. Sci. Eng. A, 2013, 574, p 1–8CrossRef Y.G. Liu, M.Q. Li, and J. Luo, The Modeling of Dynamic Recrystallization in the Isothermal Compression of 300M Steel, Mater. Sci. Eng. A, 2013, 574, p 1–8CrossRef
30.
Zurück zum Zitat W.Q. Li and Q.X. Ma, Constitutive Modeling for Investigating the Effects of Friction on Rheological Behavior During Hot Deformation, Mater. Des., 2016, 97, p 64–72CrossRef W.Q. Li and Q.X. Ma, Constitutive Modeling for Investigating the Effects of Friction on Rheological Behavior During Hot Deformation, Mater. Des., 2016, 97, p 64–72CrossRef
31.
Zurück zum Zitat E.I. Poliak and J.J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44, p 127–136CrossRef E.I. Poliak and J.J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44, p 127–136CrossRef
32.
Zurück zum Zitat D. Trimble and G.E. O’Donnell, Constitutive Modelling for Elevated Temperature Flow Behaviour of AA7075, Mater. Des., 2015, 76, p 150–168CrossRef D. Trimble and G.E. O’Donnell, Constitutive Modelling for Elevated Temperature Flow Behaviour of AA7075, Mater. Des., 2015, 76, p 150–168CrossRef
33.
Zurück zum Zitat Y.C. Lin, X.M. Chen, D.X. Wen, and M.S. Chen, A Physically-Based Constitutive Model for a Typical Nickel-Based Superalloy, Comput. Mater. Sci., 2014, 83, p 282–289CrossRef Y.C. Lin, X.M. Chen, D.X. Wen, and M.S. Chen, A Physically-Based Constitutive Model for a Typical Nickel-Based Superalloy, Comput. Mater. Sci., 2014, 83, p 282–289CrossRef
34.
Zurück zum Zitat D.Q. Dong, F. Chen, and Z.S. Cui, A Physically-Based Constitutive Model for SA508-III, Steel: Modeling and Experimental Verification, Mater. Sci. Eng. A, 2015, 607, p 630–639 D.Q. Dong, F. Chen, and Z.S. Cui, A Physically-Based Constitutive Model for SA508-III, Steel: Modeling and Experimental Verification, Mater. Sci. Eng. A, 2015, 607, p 630–639
35.
Zurück zum Zitat M.H. Wang, Y.F. Li, W.H. Wang, J. Zhou, and A. Chiba, Quantitative Analysis of Work Hardening and Dynamic Softening Behavior of Low Carbon Alloy Steel Based on the Flow Stress, Mater. Des., 2013, 45, p 384–392CrossRef M.H. Wang, Y.F. Li, W.H. Wang, J. Zhou, and A. Chiba, Quantitative Analysis of Work Hardening and Dynamic Softening Behavior of Low Carbon Alloy Steel Based on the Flow Stress, Mater. Des., 2013, 45, p 384–392CrossRef
36.
Zurück zum Zitat J. Wang, H. Xiao, H.B. Xie, X.M. Xu, and Y.N. Gao, Study on Hot Deformation Behavior of Carbon Structural Steel with Flow Stress, Mater. Sci. Eng. A, 2012, 539, p 294–300CrossRef J. Wang, H. Xiao, H.B. Xie, X.M. Xu, and Y.N. Gao, Study on Hot Deformation Behavior of Carbon Structural Steel with Flow Stress, Mater. Sci. Eng. A, 2012, 539, p 294–300CrossRef
37.
Zurück zum Zitat G.L. Ji, F.G. Li, Q.H. Li, H.Q. Li, and Z. Li, Research on the Dynamic Recrystallization Kinetics of Aermet100 Steel, Mater. Sci. Eng. A, 2010, 527, p 2350–2355CrossRef G.L. Ji, F.G. Li, Q.H. Li, H.Q. Li, and Z. Li, Research on the Dynamic Recrystallization Kinetics of Aermet100 Steel, Mater. Sci. Eng. A, 2010, 527, p 2350–2355CrossRef
Metadaten
Titel
Physics-based Constitutive Model for the Hot Deformation of 2Cr11Mo1VNbN Martensitic Stainless Steel
verfasst von
Rui Wang
Menghan Wang
Zhi Li
Cheng Lu
Publikationsdatum
06.08.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3527-z

Weitere Artikel der Ausgabe 9/2018

Journal of Materials Engineering and Performance 9/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.