Skip to main content
Erschienen in: Intelligent Service Robotics 1/2024

27.12.2023 | Original Research Paper

Pneumatic artificial muscle-based stroke rehabilitation device for upper and lower limbs

verfasst von: Muhammad Umair Ahmad Khan, Arsalan Ali, Rabbia Muneer, Muhammad Faisal

Erschienen in: Intelligent Service Robotics | Ausgabe 1/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Rehabilitation of the upper and lower limbs is crucial for patients recovering from strokes, surgeries, or injuries. Traditional rehabilitation often takes place in hospitals under the guidance of a therapist, which can delay treatment due to various constraints. This paper proposes a soft robotic device designed to aid in the flexion and extension of both the elbow and knee. The device utilizes pneumatic artificial muscles, constructed from an elastomeric bladder with a threaded mesh exterior, as its actuating mechanism. It operates in two distinct modes: a continuous passive mode, where continuous, repetitive flexion, and extension of limbs are carried out, and an active intent-based assisted mode, which detects a patient's movement intention via surface electromyography (sEMG) and subsequently aids in the movement execution. To test the effectiveness of the device, sEMG electrodes were placed on upper and lower limbs of six healthy male subjects, range of motion, and muscle activity were recorded with and without the device. Also NASA task load index (NASA-TLX) was calculated for the usability of the device. The results indicate the required muscle activity and range of motions for both upper and lower limb rehabilitation are effectively generated in both the modes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Schimmel M, Ono T, Lam OLT, Müller F (2017) Oro-facial impairment in stroke patients. J Oral Rehabil 44(4):313–326CrossRef Schimmel M, Ono T, Lam OLT, Müller F (2017) Oro-facial impairment in stroke patients. J Oral Rehabil 44(4):313–326CrossRef
3.
Zurück zum Zitat Bilic R, Kolundzic R, Jelic MM (2001) Overuse injury syndromes of the hand, forearm and elbow. Arh Hig Rada Toksikol 52:403–414 Bilic R, Kolundzic R, Jelic MM (2001) Overuse injury syndromes of the hand, forearm and elbow. Arh Hig Rada Toksikol 52:403–414
5.
Zurück zum Zitat Saita K, Morishita T, Hyakutake K, Ogata T, Fukuda H, Kamada S, Inoue T (2020) Feasibility of robot-assisted rehabilitation in poststroke recovery of upper limb function depending on the severity. Neurol Med Chir 60(4):217–222CrossRef Saita K, Morishita T, Hyakutake K, Ogata T, Fukuda H, Kamada S, Inoue T (2020) Feasibility of robot-assisted rehabilitation in poststroke recovery of upper limb function depending on the severity. Neurol Med Chir 60(4):217–222CrossRef
6.
Zurück zum Zitat Malik AN, Tariq H, Afridi A, Azam Rathore F (2022) Technological advancements in stroke rehabilitation. J Pak Med Assoc 72(8):1672–1674 Malik AN, Tariq H, Afridi A, Azam Rathore F (2022) Technological advancements in stroke rehabilitation. J Pak Med Assoc 72(8):1672–1674
7.
Zurück zum Zitat Keller U, van Hedel HJA, Klamroth-Marganska V et al (2016) ChARMin: the frst actuated exoskeleton robot for pediatric arm rehabilitation. IEEE/ASME Trans Mechatron 21(5):2201–2213CrossRef Keller U, van Hedel HJA, Klamroth-Marganska V et al (2016) ChARMin: the frst actuated exoskeleton robot for pediatric arm rehabilitation. IEEE/ASME Trans Mechatron 21(5):2201–2213CrossRef
8.
Zurück zum Zitat Wu Q, Wang X, Chen B et al (2018) Development of a minimal-interventionbased admittance control strategy for upper extremity rehabilitation exoskeleton. IEEE Trans Syst Man Cybernet Syst 48(6):1005–1016CrossRef Wu Q, Wang X, Chen B et al (2018) Development of a minimal-interventionbased admittance control strategy for upper extremity rehabilitation exoskeleton. IEEE Trans Syst Man Cybernet Syst 48(6):1005–1016CrossRef
9.
Zurück zum Zitat Washabaugh EP, Guo J, Chang CK, Remy CD, Krishnan C (2018) A portable passive rehabilitation robot for upper-extremity functional resistance training. IEEE Trans Biomed Eng 66(2):496–508CrossRef Washabaugh EP, Guo J, Chang CK, Remy CD, Krishnan C (2018) A portable passive rehabilitation robot for upper-extremity functional resistance training. IEEE Trans Biomed Eng 66(2):496–508CrossRef
10.
Zurück zum Zitat Li Z, Xie H, Li W et al (2014) Proceeding of human exoskeleton technology and discussions on future research. Chin J Mech Eng 27(3):437–447CrossRef Li Z, Xie H, Li W et al (2014) Proceeding of human exoskeleton technology and discussions on future research. Chin J Mech Eng 27(3):437–447CrossRef
11.
Zurück zum Zitat Qassim HM, Wan Hasan WZ (2020) A review on upper limb rehabilitation robots. Appl Sci 10(19):6976CrossRef Qassim HM, Wan Hasan WZ (2020) A review on upper limb rehabilitation robots. Appl Sci 10(19):6976CrossRef
12.
Zurück zum Zitat Gopura RARC, Bandara DSV, Kiguchi K et al (2016) Developments in hardware systems of active upper-limb exoskeleton robots: a review. Robot Auton Syst 75:203–220CrossRef Gopura RARC, Bandara DSV, Kiguchi K et al (2016) Developments in hardware systems of active upper-limb exoskeleton robots: a review. Robot Auton Syst 75:203–220CrossRef
13.
Zurück zum Zitat Akdoğan E, Aktan ME, Koru AT et al (2018) Hybrid impedance control of a robot manipulator for wrist and forearm rehabilitation: performance analysis and clinical results. Mechatronics 49:77–91CrossRef Akdoğan E, Aktan ME, Koru AT et al (2018) Hybrid impedance control of a robot manipulator for wrist and forearm rehabilitation: performance analysis and clinical results. Mechatronics 49:77–91CrossRef
14.
Zurück zum Zitat Zhao Z, Xiao J, Jia H, Zhang H, Hao L (2021) Prescribed performance control for the upper-limb exoskeleton system in passive rehabilitation training tasks. Appl Sci 11(21):10174CrossRef Zhao Z, Xiao J, Jia H, Zhang H, Hao L (2021) Prescribed performance control for the upper-limb exoskeleton system in passive rehabilitation training tasks. Appl Sci 11(21):10174CrossRef
15.
Zurück zum Zitat Charles SK, Krebs HI (2005) Wrist rehabilitation following stroke: Initial clinical results. In: Proc. 9th international conference on rehabilitation robotics, 2005, pp 13–16 Charles SK, Krebs HI (2005) Wrist rehabilitation following stroke: Initial clinical results. In: Proc. 9th international conference on rehabilitation robotics, 2005, pp 13–16
16.
Zurück zum Zitat Oguntosin VW, Mori Y, Kim H, Nasuto SJ, Kawamura S, Hayashi Y (2017) Design and validation of exoskeleton actuated by soft modules toward neurorehabilitation-vision-based control for precise reaching motion of upper limb. Front Neurosci 11:352CrossRef Oguntosin VW, Mori Y, Kim H, Nasuto SJ, Kawamura S, Hayashi Y (2017) Design and validation of exoskeleton actuated by soft modules toward neurorehabilitation-vision-based control for precise reaching motion of upper limb. Front Neurosci 11:352CrossRef
17.
Zurück zum Zitat Niyetkaliyev AS, Hussain S, Ghayesh MH, Alici G (2017) Review on design and control aspects of robotic shoulder rehabilitation orthoses. IEEE Trans Hum Mach Syst 47:1–12CrossRef Niyetkaliyev AS, Hussain S, Ghayesh MH, Alici G (2017) Review on design and control aspects of robotic shoulder rehabilitation orthoses. IEEE Trans Hum Mach Syst 47:1–12CrossRef
18.
Zurück zum Zitat Sanjuan JD, Castillo AD, Padilla MA et al (2020) Cable driven exoskeleton for upper-limb rehabilitation: a design review. Robot Auton Syst 126:103445CrossRef Sanjuan JD, Castillo AD, Padilla MA et al (2020) Cable driven exoskeleton for upper-limb rehabilitation: a design review. Robot Auton Syst 126:103445CrossRef
19.
Zurück zum Zitat Wu Q, Wang X, Chen B et al (2018) Development of an RBFN-based neural-fuzzy adaptive control strategy for an upper limb rehabilitation exoskeleton. Mechatronics 53:85–94CrossRef Wu Q, Wang X, Chen B et al (2018) Development of an RBFN-based neural-fuzzy adaptive control strategy for an upper limb rehabilitation exoskeleton. Mechatronics 53:85–94CrossRef
20.
Zurück zum Zitat Li J, Fan W, Dong M, Rong X (2020) Implementation of passive compliance training on a parallel ankle rehabilitation robot to enhance safety. Ind Robot Int J Robot Res Appl 47(5):747–755CrossRef Li J, Fan W, Dong M, Rong X (2020) Implementation of passive compliance training on a parallel ankle rehabilitation robot to enhance safety. Ind Robot Int J Robot Res Appl 47(5):747–755CrossRef
21.
Zurück zum Zitat Banala SK, Agrawal SK, Scholz JP (2007) Active leg exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th international conference on rehabilitation robotics pp 401–407, IEEE Banala SK, Agrawal SK, Scholz JP (2007) Active leg exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients. In: 2007 IEEE 10th international conference on rehabilitation robotics pp 401–407, IEEE
22.
Zurück zum Zitat Banala SK, Kim SH, Agrawal SK, Scholz JP (2008) Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng 17(1):2–8CrossRef Banala SK, Kim SH, Agrawal SK, Scholz JP (2008) Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng 17(1):2–8CrossRef
23.
Zurück zum Zitat Kalita B, Narayan J, Dwivedy SK (2021) Development of active lower limb robotic-based orthosis and exoskeleton devices: a systematic review. Int J Soc Robot 13:775–793CrossRef Kalita B, Narayan J, Dwivedy SK (2021) Development of active lower limb robotic-based orthosis and exoskeleton devices: a systematic review. Int J Soc Robot 13:775–793CrossRef
24.
Zurück zum Zitat Liu Q, Liu Y, Li Y, Zhu C, Meng W, Ai Q, Xie SQ (2021) Path planning and impedance control of a soft modular exoskeleton for coordinated upper limb rehabilitation. Front Neurorobot 15:745531CrossRef Liu Q, Liu Y, Li Y, Zhu C, Meng W, Ai Q, Xie SQ (2021) Path planning and impedance control of a soft modular exoskeleton for coordinated upper limb rehabilitation. Front Neurorobot 15:745531CrossRef
25.
Zurück zum Zitat Wang Y, Xu Q (2021) Design and testing of a soft parallel robot based on pneumatic artificial muscles for wrist rehabilitation. Sci Rep 11(1):1273CrossRef Wang Y, Xu Q (2021) Design and testing of a soft parallel robot based on pneumatic artificial muscles for wrist rehabilitation. Sci Rep 11(1):1273CrossRef
26.
Zurück zum Zitat Nguyen HT, Trinh VC, Le TD (2020) An adaptive fast terminal sliding mode controller of exercise-assisted robotic arm for elbow joint rehabilitation featuring pneumatic artificial muscle actuator. Actuators 9(4):118CrossRef Nguyen HT, Trinh VC, Le TD (2020) An adaptive fast terminal sliding mode controller of exercise-assisted robotic arm for elbow joint rehabilitation featuring pneumatic artificial muscle actuator. Actuators 9(4):118CrossRef
27.
Zurück zum Zitat Liu Q, Zuo J, Zhu C et al (2020) Design and control of soft rehabilitation robots actuated by pneumatic muscles: state of the art. Future Gener Comput Syst 113:620–634CrossRef Liu Q, Zuo J, Zhu C et al (2020) Design and control of soft rehabilitation robots actuated by pneumatic muscles: state of the art. Future Gener Comput Syst 113:620–634CrossRef
28.
Zurück zum Zitat Wang J, Fei Y, Chen W (2020) Integration, sensing, and control of a modular soft-rigid pneumatic lower limb exoskeleton. Soft Robot 7(2):140–154CrossRef Wang J, Fei Y, Chen W (2020) Integration, sensing, and control of a modular soft-rigid pneumatic lower limb exoskeleton. Soft Robot 7(2):140–154CrossRef
29.
Zurück zum Zitat Xu K, Zhao J, Qiu D et al (2014) A pilot study of a continuum shoulder exoskeleton for anatomy adaptive assistances. J Mech Robot 6(4):041011CrossRef Xu K, Zhao J, Qiu D et al (2014) A pilot study of a continuum shoulder exoskeleton for anatomy adaptive assistances. J Mech Robot 6(4):041011CrossRef
30.
Zurück zum Zitat Alamdari A, Krovi V (2016) Design and analysis of a cable-driven articulated rehabilitation system for gait training. J Mech Robot 8(5):051018CrossRef Alamdari A, Krovi V (2016) Design and analysis of a cable-driven articulated rehabilitation system for gait training. J Mech Robot 8(5):051018CrossRef
31.
Zurück zum Zitat Cui X, Chen W, Jin X et al (2017) Design of a 7-DOF cable-driven arm exoskeleton (CAREX-7) and a controller for dexterous motion training or assistance. IEEE/ASME Trans Mechatron 22(1):161–172CrossRef Cui X, Chen W, Jin X et al (2017) Design of a 7-DOF cable-driven arm exoskeleton (CAREX-7) and a controller for dexterous motion training or assistance. IEEE/ASME Trans Mechatron 22(1):161–172CrossRef
32.
Zurück zum Zitat Toth L, Schifer A, Nyitrai M et al (2020) Developing an anti-spastic orthosis for daily home-use of stroke patients using smart memory alloys and 3D printing technologies. Mater Des 195:109029CrossRef Toth L, Schifer A, Nyitrai M et al (2020) Developing an anti-spastic orthosis for daily home-use of stroke patients using smart memory alloys and 3D printing technologies. Mater Des 195:109029CrossRef
33.
Zurück zum Zitat Polygerinos P, Wang Z, Galloway KC, Wood RJ, Walsh CJ (2015) Soft robotic glove for combined assistance and at-home rehabilitation. Robot Auton Syst 73:135–143CrossRef Polygerinos P, Wang Z, Galloway KC, Wood RJ, Walsh CJ (2015) Soft robotic glove for combined assistance and at-home rehabilitation. Robot Auton Syst 73:135–143CrossRef
34.
Zurück zum Zitat Lerner ZF, Harvey TA, Lawson JL (2019) A battery-powered ankle exoskeleton improves gait mechanics in a feasibility study of individuals with cerebral palsy. Ann Biomed Eng 47:1345–1356CrossRef Lerner ZF, Harvey TA, Lawson JL (2019) A battery-powered ankle exoskeleton improves gait mechanics in a feasibility study of individuals with cerebral palsy. Ann Biomed Eng 47:1345–1356CrossRef
35.
Zurück zum Zitat Chiri A, Giovacchini F, Vitiello N, Cattin E, Roccella S, Vecchi F, Carrozza MC (2009) HANDEXOS: towards an exoskeleton device for the rehabilitation of the hand. In: IEEE/RSJ international conference on intelligent robots and systems, pp 1106–1111, St. Louis, MO, USA (2009) Chiri A, Giovacchini F, Vitiello N, Cattin E, Roccella S, Vecchi F, Carrozza MC (2009) HANDEXOS: towards an exoskeleton device for the rehabilitation of the hand. In: IEEE/RSJ international conference on intelligent robots and systems, pp 1106–1111, St. Louis, MO, USA (2009)
36.
Zurück zum Zitat Iqbal J, Khan H, Tsagarakis NG, Caldwell DG (2014) A novel exoskeleton robotic system for hand rehabilitation–conceptualization to prototyping. Biocybern Biomed Eng 34(2):79–89CrossRef Iqbal J, Khan H, Tsagarakis NG, Caldwell DG (2014) A novel exoskeleton robotic system for hand rehabilitation–conceptualization to prototyping. Biocybern Biomed Eng 34(2):79–89CrossRef
37.
Zurück zum Zitat Conti R, Allotta B, Meli E, Ridolfi A (2017) Development, design and validation of an assistive device for hand disabilities based on an innovative mechanism. Robotica 35(4):892–906CrossRef Conti R, Allotta B, Meli E, Ridolfi A (2017) Development, design and validation of an assistive device for hand disabilities based on an innovative mechanism. Robotica 35(4):892–906CrossRef
38.
Zurück zum Zitat Koo I, Yun C, Costa MVO, Scognamiglio JVF, Yangali TA, Park D, et al. (2014) Development of a meal assistive exoskeleton made of soft materials for polymyositis patients. In: proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), 2014, pp 542–547 Koo I, Yun C, Costa MVO, Scognamiglio JVF, Yangali TA, Park D, et al. (2014) Development of a meal assistive exoskeleton made of soft materials for polymyositis patients. In: proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS), 2014, pp 542–547
39.
Zurück zum Zitat Park D, Koo I, Cho KJ (2015) Evaluation of an improved soft meal assistive exoskeleton with an adjustable weight-bearing system for people with disability. In: proceedings of the IEEE international conference on rehabilitation robotics, 2015, pp 79–84 Park D, Koo I, Cho KJ (2015) Evaluation of an improved soft meal assistive exoskeleton with an adjustable weight-bearing system for people with disability. In: proceedings of the IEEE international conference on rehabilitation robotics, 2015, pp 79–84
40.
Zurück zum Zitat Lessard S, Pansodtee P, Robbins A, Trombadore JM, Kurniawan S, Teodorescu M (2018) A soft exosuit for flexible upper-extremity rehabilitation. IEEE Trans Neural Syst Rehabil Eng 26(8):1604–1617CrossRef Lessard S, Pansodtee P, Robbins A, Trombadore JM, Kurniawan S, Teodorescu M (2018) A soft exosuit for flexible upper-extremity rehabilitation. IEEE Trans Neural Syst Rehabil Eng 26(8):1604–1617CrossRef
41.
Zurück zum Zitat Goppold JP, Kuschan J, Thiele G, Schmidt H, Krüger J, Hackbart R, et al. (2020) PowerGrasp-Design and evaluation of a modular soft-robotic arm exosuit for industrial applications. In: proceedings of the 52nd international symposium on robotics, 2020, pp 107–114 Goppold JP, Kuschan J, Thiele G, Schmidt H, Krüger J, Hackbart R, et al. (2020) PowerGrasp-Design and evaluation of a modular soft-robotic arm exosuit for industrial applications. In: proceedings of the 52nd international symposium on robotics, 2020, pp 107–114
42.
Zurück zum Zitat O'Neill CT, Phipps NS, Cappello L, Paganoni S, Walsh CJ (2017) Soft wearable robot for the shoulder: design, characterization, and preliminary testing. In: IEEE international conference on rehabilitation robotics. Pp 1672–8 O'Neill CT, Phipps NS, Cappello L, Paganoni S, Walsh CJ (2017) Soft wearable robot for the shoulder: design, characterization, and preliminary testing. In: IEEE international conference on rehabilitation robotics. Pp 1672–8
43.
Zurück zum Zitat Natividad RF, Yeow CH (2016) Development of a soft robotic shoulder assistive device for shoulder abduction. In: 6th IEEE RAS EMBS international conference on biomedical robotics and biomechatronics. IEEE, pp 989–993 Natividad RF, Yeow CH (2016) Development of a soft robotic shoulder assistive device for shoulder abduction. In: 6th IEEE RAS EMBS international conference on biomedical robotics and biomechatronics. IEEE, pp 989–993
44.
Zurück zum Zitat Kumar N, Pankaj D, Mahajan A, Kumar A, Sohi BS (2009) Evaluation of normal gait using electro-goniometer. J Sci Ind Res (India) 68(8):696–698 Kumar N, Pankaj D, Mahajan A, Kumar A, Sohi BS (2009) Evaluation of normal gait using electro-goniometer. J Sci Ind Res (India) 68(8):696–698
Metadaten
Titel
Pneumatic artificial muscle-based stroke rehabilitation device for upper and lower limbs
verfasst von
Muhammad Umair Ahmad Khan
Arsalan Ali
Rabbia Muneer
Muhammad Faisal
Publikationsdatum
27.12.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Intelligent Service Robotics / Ausgabe 1/2024
Print ISSN: 1861-2776
Elektronische ISSN: 1861-2784
DOI
https://doi.org/10.1007/s11370-023-00509-y

Weitere Artikel der Ausgabe 1/2024

Intelligent Service Robotics 1/2024 Zur Ausgabe

Neuer Inhalt