Skip to main content
Erschienen in: Wireless Personal Communications 4/2020

12.06.2020

Polarized Antenna Aided Spectrum Sensing Based on Stochastic Resonance

verfasst von: Jin Lu, Ming Huang, Jingjing Yang, Peng Li

Erschienen in: Wireless Personal Communications | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless communications is one of the most rapidly developing segments of the telecommunications industry. A large amount of intelligent terminal occupying the spectrum results in the reduction of radio spectrum resources. Cognitive radio is considered to be the most effective approach to solve this problem, which required rapid and exact spectrum sensing. This paper proposes a novel polarized antenna method based on likelihood ratio test and stochastic resonance. In the condition of adiabatic approximation, the stochastic resonance can increase signal to noise ratio, and adequately transfer the energy of noise to original signal. The proposed method applies the stochastic resonance to each polarized component. The experiments show that the proposed spectrum sensing method is suitable for generalized likelihood ratio test in additional white Gussion noise and lower signal to noise ratio, rather than polarized channel matrix and idealistic likelihood ratio test.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang, S., Hu, Y., Zhang, L., & Bao, Z. (2018). Novel spectrum sensing and access in cognitive radio networks. Science China (Information Sciences), 61(8), 228–230.MathSciNet Zhang, S., Hu, Y., Zhang, L., & Bao, Z. (2018). Novel spectrum sensing and access in cognitive radio networks. Science China (Information Sciences), 61(8), 228–230.MathSciNet
2.
Zurück zum Zitat Lu, Q. N., Yang, J. J., Jin, Z. Y., Chen, D. Z., & Huang, M. (2017). State of the art and challenges of radio spectrum monitoring in China. Radio Science, 52(10), 1261–1267.CrossRef Lu, Q. N., Yang, J. J., Jin, Z. Y., Chen, D. Z., & Huang, M. (2017). State of the art and challenges of radio spectrum monitoring in China. Radio Science, 52(10), 1261–1267.CrossRef
3.
Zurück zum Zitat IEEE. (2011). IEEE standard for information technology—local and metropolitan area networks—specific requirements—part 22: cognitive wireless RAN medium access control (MAC) and physical layer (PHY) specifications: policies and procedures for operation in the TVB. IEEE Std 802.22, 1–680. IEEE. (2011). IEEE standard for information technology—local and metropolitan area networks—specific requirements—part 22: cognitive wireless RAN medium access control (MAC) and physical layer (PHY) specifications: policies and procedures for operation in the TVB. IEEE Std 802.22, 1–680.
4.
Zurück zum Zitat Claudino, L., & Abrão, T. (2017). Spectrum sensing methods for cognitive radio networks: a review. Wireless Personal Communications, 95(4), 5003–5037.CrossRef Claudino, L., & Abrão, T. (2017). Spectrum sensing methods for cognitive radio networks: a review. Wireless Personal Communications, 95(4), 5003–5037.CrossRef
5.
Zurück zum Zitat He, D., Lin, Y., He, C., & Jiang, L. (2010). A novel spectrum-sensing technique in cognitive radio based on stochastic resonance. IEEE Transactions on Vehicular Technology, 59(4), 1680–1688.CrossRef He, D., Lin, Y., He, C., & Jiang, L. (2010). A novel spectrum-sensing technique in cognitive radio based on stochastic resonance. IEEE Transactions on Vehicular Technology, 59(4), 1680–1688.CrossRef
6.
Zurück zum Zitat Wang, J., Ren, X., Zhang, S., Zhang, D., Li, H., & Li, S. (2014). Adaptive bistable stochastic resonance aided spectrum sensing. IEEE Transactions on Wireless Communications, 13(7), 4014–4024.CrossRef Wang, J., Ren, X., Zhang, S., Zhang, D., Li, H., & Li, S. (2014). Adaptive bistable stochastic resonance aided spectrum sensing. IEEE Transactions on Wireless Communications, 13(7), 4014–4024.CrossRef
7.
Zurück zum Zitat Li, Q., & Li, Z. (2013). A novel sequential spectrum sensing method in cognitive radio using suprathreshold stochastic resonance. IEEE Transactions on Vehicular Technology, 63(4), 1717–1725. Li, Q., & Li, Z. (2013). A novel sequential spectrum sensing method in cognitive radio using suprathreshold stochastic resonance. IEEE Transactions on Vehicular Technology, 63(4), 1717–1725.
8.
Zurück zum Zitat Lu, J., Huang, M., & Yang, J. J. (2017). A novel spectrum sensing method based on tri-stable stochastic resonance and quantum particle swarm optimization. Wireless Personal Communications, 95(3), 2635–2647.CrossRef Lu, J., Huang, M., & Yang, J. J. (2017). A novel spectrum sensing method based on tri-stable stochastic resonance and quantum particle swarm optimization. Wireless Personal Communications, 95(3), 2635–2647.CrossRef
9.
Zurück zum Zitat He, D., Chen, X., Pei, L., Jiang, L.G., & Yu, W.X. (2019). Improvement of noise uncertainty and signal-to-noise ratio wall in spectrum sensing based on optimal stochastic resonance. Sensors, 19(4), 1–17. He, D., Chen, X., Pei, L., Jiang, L.G., & Yu, W.X. (2019). Improvement of noise uncertainty and signal-to-noise ratio wall in spectrum sensing based on optimal stochastic resonance. Sensors, 19(4), 1–17.
10.
Zurück zum Zitat Huang, D., Yang, J., Zhang, J., & Liu, H. (2018). An improved adaptive stochastic resonance with general scale transformation to extract high-frequency characteristics in strong noise. International Journal of Modern Physics B, 32(15), 185–205.MathSciNetCrossRef Huang, D., Yang, J., Zhang, J., & Liu, H. (2018). An improved adaptive stochastic resonance with general scale transformation to extract high-frequency characteristics in strong noise. International Journal of Modern Physics B, 32(15), 185–205.MathSciNetCrossRef
11.
Zurück zum Zitat Zhang, X. K., Zhang, B. N., Guo, D. X., Liu, F. J., & Wang, Y. W. (2017). Application of signal polarization feature in wireless transmission. Communications Technology, 50(6), 1101–1107. Zhang, X. K., Zhang, B. N., Guo, D. X., Liu, F. J., & Wang, Y. W. (2017). Application of signal polarization feature in wireless transmission. Communications Technology, 50(6), 1101–1107.
12.
Zurück zum Zitat Novak, L. M., Sechtin, M. B., & Cardullo, M. J. (1989). Studies on target detection algorithms which use polarimetric radar data. IEEE Transactions on Aerospace and Electronic Systems, 25(2), 150–165.CrossRef Novak, L. M., Sechtin, M. B., & Cardullo, M. J. (1989). Studies on target detection algorithms which use polarimetric radar data. IEEE Transactions on Aerospace and Electronic Systems, 25(2), 150–165.CrossRef
13.
Zurück zum Zitat Pratt, T., Nguyen, S., & Walkenhorst, B.T. (2009). Dual-polarized architectures for sensing with wireless communications signals. IEEE Military Communications Conference (MILCOM), (pp. 1–6). Pratt, T., Nguyen, S., & Walkenhorst, B.T. (2009). Dual-polarized architectures for sensing with wireless communications signals. IEEE Military Communications Conference (MILCOM), (pp. 1–6).
14.
Zurück zum Zitat Liu, F., Feng, C., Guo, C., & Wang, Y. (2010). Virtual polarization detection: a vector signal sensing method for cognitive radios. IEEE Vehicular Technology Conference (VTC), (pp.1–5) May. Liu, F., Feng, C., Guo, C., & Wang, Y. (2010). Virtual polarization detection: a vector signal sensing method for cognitive radios. IEEE Vehicular Technology Conference (VTC), (pp.1–5) May.
15.
Zurück zum Zitat Sharma, S.K., Chatzinotas, S., & Ottersten, B. (2012). Exploiting polarization for spectrum sensing in cognitive SatComs. International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), (pp. 36–41). Sharma, S.K., Chatzinotas, S., & Ottersten, B. (2012). Exploiting polarization for spectrum sensing in cognitive SatComs. International ICST Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), (pp. 36–41).
16.
Zurück zum Zitat Xu, Y., & Lim, M.S. (2012). Spectrum sensing using dual polarized multiple antennas in cognitive radio systems. Asia-Pacific Conference on Communications (APCC), (pp. 914–917). Xu, Y., & Lim, M.S. (2012). Spectrum sensing using dual polarized multiple antennas in cognitive radio systems. Asia-Pacific Conference on Communications (APCC), (pp. 914–917).
17.
Zurück zum Zitat Guo, C., Wu, X., Feng, C., & Zeng, Z. (2013). Spectrum sensing for cognitive radios based on directional statistics of polarization vectors. IEEE Journal on Selected Areas in Communications, 31(3), 379–393.CrossRef Guo, C., Wu, X., Feng, C., & Zeng, Z. (2013). Spectrum sensing for cognitive radios based on directional statistics of polarization vectors. IEEE Journal on Selected Areas in Communications, 31(3), 379–393.CrossRef
18.
Zurück zum Zitat Guo, C., Li, H., & Chen, S. (2016). Study of spectrum sensing exploiting polarization: from optimal LRT to practical detectors. Digital Signal Processing, 49, 1–13.CrossRef Guo, C., Li, H., & Chen, S. (2016). Study of spectrum sensing exploiting polarization: from optimal LRT to practical detectors. Digital Signal Processing, 49, 1–13.CrossRef
19.
Zurück zum Zitat Guo, C., Chen, S., & Liu, F. (2016). Polarization-based spectrum sensing algorithms for cognitive radios: upper and practical bounds and experimental assessment. IEEE Transactions on Vehicular Technology, 65(10), 8072–8086.CrossRef Guo, C., Chen, S., & Liu, F. (2016). Polarization-based spectrum sensing algorithms for cognitive radios: upper and practical bounds and experimental assessment. IEEE Transactions on Vehicular Technology, 65(10), 8072–8086.CrossRef
20.
Zurück zum Zitat Lu, J., Huang, M., & Yang, J. (2019). Study of polarization spectrum sensing based on stochastic resonance in partial polarized noise. Wireless Networks, 25(8), 4991–4999.CrossRef Lu, J., Huang, M., & Yang, J. (2019). Study of polarization spectrum sensing based on stochastic resonance in partial polarized noise. Wireless Networks, 25(8), 4991–4999.CrossRef
Metadaten
Titel
Polarized Antenna Aided Spectrum Sensing Based on Stochastic Resonance
verfasst von
Jin Lu
Ming Huang
Jingjing Yang
Peng Li
Publikationsdatum
12.06.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07537-2

Weitere Artikel der Ausgabe 4/2020

Wireless Personal Communications 4/2020 Zur Ausgabe

Neuer Inhalt