Skip to main content
Erschienen in: Journal of Polymer Research 10/2019

01.10.2019 | ORIGINAL PAPER

Poly(arylene ether ketone) containing amino and fluorenyl groups for highly selective of gas separation

verfasst von: Lei Hou, Zhe Wang, Jingmei Xu, Zhaoyu Chen

Erschienen in: Journal of Polymer Research | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, a series of poly(arylene ether ketone) containing amino and fluorenyl groups (Am-PAFEK-X) were successfully prepared by the polycondensation, which was confirmed by analizing its chemical structure with the Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance. It was found that Am-PAFEK-X exhibited high thermal stability (Td5 > 172 °C) and glass transition temperature (Tg > 191 °C) as well as good mechanical properties, and its highest Young’s modulus and tensile strength are respectively 2299 MPa and 59 MPa. In addition, the O2, N2, CO2 and CH4 were applied to study the gas transmission properties of Am-PAFEK-X membranes to different gases, in which the Am-PAFEK-60% had the highest selectivity to CO2/N2 and CO2/CH4, respectively 31.13 and 33.36. As shown in the results, the selectivity of the membrane to CO2 increased with the increase of the large rigid fluorenyl groups, which indicated that the gas permeation results were closely related to the intermolecular interaction and the structure of the polymer chain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Obama B (2017) The irreversible momentum of clean energy. Science 355(6321):126–129PubMed Obama B (2017) The irreversible momentum of clean energy. Science 355(6321):126–129PubMed
2.
Zurück zum Zitat Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48(10):4638–4663 Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48(10):4638–4663
3.
Zurück zum Zitat Du N, Park HB, Dal-Cin MM, Guiver MD (2012) Advances in high permeability polymeric membrane materials for CO2 separations. Energy Environ Sci 5(6):7306–7322 Du N, Park HB, Dal-Cin MM, Guiver MD (2012) Advances in high permeability polymeric membrane materials for CO2 separations. Energy Environ Sci 5(6):7306–7322
4.
Zurück zum Zitat Baker RW, Lokhandwala K (2008) Natural gas processing with membranes: an overview. Ind Eng Chem Res 47(7):2109–2121 Baker RW, Lokhandwala K (2008) Natural gas processing with membranes: an overview. Ind Eng Chem Res 47(7):2109–2121
5.
Zurück zum Zitat Lin H, He Z, Sun Z, Vu J, Ng A, Mohammed M (2014) CO2-selective membranes for hydrogen production and CO2 capture–part I: membrane development. J Membr Sci 457:149–161 Lin H, He Z, Sun Z, Vu J, Ng A, Mohammed M (2014) CO2-selective membranes for hydrogen production and CO2 capture–part I: membrane development. J Membr Sci 457:149–161
6.
Zurück zum Zitat Lin H, He Z, Sun Z, Kniep J, Ng A, Baker RW (2015) CO2-selective membranes for hydrogen production and CO2 capture–part II: techno-economic analysis. J Membr Sci 493:794–806 Lin H, He Z, Sun Z, Kniep J, Ng A, Baker RW (2015) CO2-selective membranes for hydrogen production and CO2 capture–part II: techno-economic analysis. J Membr Sci 493:794–806
7.
Zurück zum Zitat Qu Z, Wu H, Zhou Y, Yang L, Wu X, Wu Y (2019) Constructing interconnected ionic cluster network in polyelectrolyte membranes for enhanced CO2 permeation. Chem Eng Sci 199:275–284 Qu Z, Wu H, Zhou Y, Yang L, Wu X, Wu Y (2019) Constructing interconnected ionic cluster network in polyelectrolyte membranes for enhanced CO2 permeation. Chem Eng Sci 199:275–284
8.
Zurück zum Zitat Jiang X, Li S, Shao L (2017) Pushing CO2-philic membrane performance to the limit by designing semi-interpenetrating networks (SIPN) for sustainable CO2 separations. Energy Environ Sci 10(6):1339–1344 Jiang X, Li S, Shao L (2017) Pushing CO2-philic membrane performance to the limit by designing semi-interpenetrating networks (SIPN) for sustainable CO2 separations. Energy Environ Sci 10(6):1339–1344
9.
Zurück zum Zitat Sanders DF, Smith ZP, Guo R, Robeson LM, McGrath JE, Paul DR (2013) Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54(18):4729–4761 Sanders DF, Smith ZP, Guo R, Robeson LM, McGrath JE, Paul DR (2013) Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54(18):4729–4761
10.
Zurück zum Zitat Wang Z, Wang D, Zhang S, Hu L, Jin J (2016) Interfacial design of mixed matrix membranes for improved gas separation performance. Adv Mater 28(17):3399–3405PubMed Wang Z, Wang D, Zhang S, Hu L, Jin J (2016) Interfacial design of mixed matrix membranes for improved gas separation performance. Adv Mater 28(17):3399–3405PubMed
11.
Zurück zum Zitat Anjum MW, de Clippel F, Didden J, Khan AL, Couck S, Baron GV (2015) Polyimide mixed matrix membranes for CO2 separations using carbon–silica nanocomposite fillers. J Membr Sci 495:121–129 Anjum MW, de Clippel F, Didden J, Khan AL, Couck S, Baron GV (2015) Polyimide mixed matrix membranes for CO2 separations using carbon–silica nanocomposite fillers. J Membr Sci 495:121–129
12.
Zurück zum Zitat Kosinov N, Gascon J, Kapteijn F, Hensen EJ (2016) Recent developments in zeolite membranes for gas separation. J Membr Sci 499:65–79 Kosinov N, Gascon J, Kapteijn F, Hensen EJ (2016) Recent developments in zeolite membranes for gas separation. J Membr Sci 499:65–79
13.
Zurück zum Zitat Ibrahim AF, Lin Y (2018) Synthesis of graphene oxide membranes on polyester substrate by spray coating for gas separation. Chem Eng Sci 190:312–319 Ibrahim AF, Lin Y (2018) Synthesis of graphene oxide membranes on polyester substrate by spray coating for gas separation. Chem Eng Sci 190:312–319
14.
Zurück zum Zitat Zhang N, Wu H, Li F, Dong S, Yang L, Ren Y (2018) Heterostructured filler in mixed matrix membranes to coordinate physical and chemical selectivities for enhanced CO2 separation. J Membr Sci 567:272–280 Zhang N, Wu H, Li F, Dong S, Yang L, Ren Y (2018) Heterostructured filler in mixed matrix membranes to coordinate physical and chemical selectivities for enhanced CO2 separation. J Membr Sci 567:272–280
15.
Zurück zum Zitat Qiao Z, Zhao S, Sheng M, Wang J, Wang S, Wang Z (2019) Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes. Nat Mater 18(2):163–168PubMed Qiao Z, Zhao S, Sheng M, Wang J, Wang S, Wang Z (2019) Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes. Nat Mater 18(2):163–168PubMed
16.
Zurück zum Zitat Wu X, Liu W, Wu H, Zong X, Yang L, Wu Y (2018) Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performance. J Membr Sci 548:309–318 Wu X, Liu W, Wu H, Zong X, Yang L, Wu Y (2018) Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performance. J Membr Sci 548:309–318
17.
Zurück zum Zitat Alaslai N, Ghanem B, Alghunaimi F, Litwiller E, Pinnau I (2016) Pure-and mixed-gas permeation properties of highly selective and plasticization resistant hydroxyl-diamine-based 6FDA polyimides for CO2/CH4 separation. J Membr Sci 505:100–107 Alaslai N, Ghanem B, Alghunaimi F, Litwiller E, Pinnau I (2016) Pure-and mixed-gas permeation properties of highly selective and plasticization resistant hydroxyl-diamine-based 6FDA polyimides for CO2/CH4 separation. J Membr Sci 505:100–107
18.
Zurück zum Zitat Freeman B, Yampolskii Y (2006) Pinnau I. John Wiley & Sons, Materials science of membranes for gas and vapor separation Freeman B, Yampolskii Y (2006) Pinnau I. John Wiley & Sons, Materials science of membranes for gas and vapor separation
19.
Zurück zum Zitat Robeson LM (2006) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62(2):165–185 Robeson LM (2006) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62(2):165–185
20.
Zurück zum Zitat Robeson LM (2008) The upper bound revisited. J Membr Sci 320(1–2):390–400 Robeson LM (2008) The upper bound revisited. J Membr Sci 320(1–2):390–400
21.
Zurück zum Zitat Asghar H, Ilyas A, Tahir Z, Li X, Khan AL (2018) Fluorinated and sulfonated poly (ether ether ketone) and Matrimid blend membranes for CO2 separation. Sep Purif Technol 203:233–241 Asghar H, Ilyas A, Tahir Z, Li X, Khan AL (2018) Fluorinated and sulfonated poly (ether ether ketone) and Matrimid blend membranes for CO2 separation. Sep Purif Technol 203:233–241
22.
Zurück zum Zitat Li HQ, Liu XJ, Xu J, Xu D, Ni H, Wang S (2016) Enhanced proton conductivity of sulfonated poly (arylene ether ketone sulfone) for fuel cells by grafting triazole groups onto polymer chains. J Membr Sci 509:173–181 Li HQ, Liu XJ, Xu J, Xu D, Ni H, Wang S (2016) Enhanced proton conductivity of sulfonated poly (arylene ether ketone sulfone) for fuel cells by grafting triazole groups onto polymer chains. J Membr Sci 509:173–181
23.
Zurück zum Zitat González-Díaz MO, Pérez-Francisco JM, Herrera-Kao W, González-Díaz A, Montes-Luna A, Aguilar-Vega M (2017) Novel copolyaramides with bulky flexible groups for pure and mixed-gas separation. Sep Purif Technol 189:366–374 González-Díaz MO, Pérez-Francisco JM, Herrera-Kao W, González-Díaz A, Montes-Luna A, Aguilar-Vega M (2017) Novel copolyaramides with bulky flexible groups for pure and mixed-gas separation. Sep Purif Technol 189:366–374
24.
Zurück zum Zitat Zhang C, Li P, Cao B (2017) Decarboxylation crosslinking of polyimides with high CO2/CH4 separation performance and plasticization resistance. J Membr Sci 528:206–216 Zhang C, Li P, Cao B (2017) Decarboxylation crosslinking of polyimides with high CO2/CH4 separation performance and plasticization resistance. J Membr Sci 528:206–216
25.
Zurück zum Zitat Zhang C, Cao B, Li P (2018) Thermal oxidative crosslinking of phenolphthalein-based cardo polyimides with enhanced gas permeability and selectivity. J Membr Sci 546:90–99 Zhang C, Cao B, Li P (2018) Thermal oxidative crosslinking of phenolphthalein-based cardo polyimides with enhanced gas permeability and selectivity. J Membr Sci 546:90–99
26.
Zurück zum Zitat Lee H-J, Suda H, Haraya K (2008) Characterization of the post-oxidized carbon membranes derived from poly (2, 4-dimethyl-1, 4-phenylene oxide) and their gas permeation properties. Sep Purif Technol 59(2):190–196 Lee H-J, Suda H, Haraya K (2008) Characterization of the post-oxidized carbon membranes derived from poly (2, 4-dimethyl-1, 4-phenylene oxide) and their gas permeation properties. Sep Purif Technol 59(2):190–196
27.
Zurück zum Zitat Wu D, Han Y, Salim W, Chen KK, Li J, Ho WW (2018) Hydrophilic and morphological modification of nanoporous polyethersulfone substrates for composite membranes in CO2 separation. J Membr Sci 565:439–449 Wu D, Han Y, Salim W, Chen KK, Li J, Ho WW (2018) Hydrophilic and morphological modification of nanoporous polyethersulfone substrates for composite membranes in CO2 separation. J Membr Sci 565:439–449
28.
Zurück zum Zitat Yampolskii Y (2012) Polymeric gas separation membranes. Macromolecules 45(8):3298–3311 Yampolskii Y (2012) Polymeric gas separation membranes. Macromolecules 45(8):3298–3311
29.
Zurück zum Zitat Yu Y, Pan W, Guo X, Gao L, Gu Y, Liu Y (2017) A poly (arylene ether sulfone) hybrid membrane using titanium dioxide nanoparticles as the filler: preparation, characterization and gas separation study. High Performance Polymers 29(1):26–35 Yu Y, Pan W, Guo X, Gao L, Gu Y, Liu Y (2017) A poly (arylene ether sulfone) hybrid membrane using titanium dioxide nanoparticles as the filler: preparation, characterization and gas separation study. High Performance Polymers 29(1):26–35
30.
Zurück zum Zitat Rao PS, Wey M-Y, Tseng H-H, Kumar IA, Weng T-H (2008) A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application. Microporous Mesoporous Mater 113(1–3):499–510 Rao PS, Wey M-Y, Tseng H-H, Kumar IA, Weng T-H (2008) A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application. Microporous Mesoporous Mater 113(1–3):499–510
31.
Zurück zum Zitat Dong G, Hou J, Wang J, Zhang Y, Chen V, Liu J (2016) Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. J Membr Sci 520:860–868 Dong G, Hou J, Wang J, Zhang Y, Chen V, Liu J (2016) Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. J Membr Sci 520:860–868
32.
Zurück zum Zitat Zhu T, Yang X, He X, Zheng Y, Luo J (2018) Aromatic polyamides and copolyamides containing fluorene group: synthesis, thermal stability, and gas transport properties. High Performance Polymers 30(7):821–832 Zhu T, Yang X, He X, Zheng Y, Luo J (2018) Aromatic polyamides and copolyamides containing fluorene group: synthesis, thermal stability, and gas transport properties. High Performance Polymers 30(7):821–832
33.
Zurück zum Zitat Bisoi S, Bandyopadhyay P, Bera D (2015) Banerjee S. effect of bulky groups on gas transport properties of semifluorinated poly (ether amide) containing pyridine moiety. Eur Polym J 66:419–428 Bisoi S, Bandyopadhyay P, Bera D (2015) Banerjee S. effect of bulky groups on gas transport properties of semifluorinated poly (ether amide) containing pyridine moiety. Eur Polym J 66:419–428
34.
Zurück zum Zitat Yu Y, Wang Y, Li T, Liang W, Li C, Niu W (2017) Synthesis, properties and gas separation performance of poly (arylene ether sulfone) containing imide pendant groups. RSC Adv 7(67):42468–42475 Yu Y, Wang Y, Li T, Liang W, Li C, Niu W (2017) Synthesis, properties and gas separation performance of poly (arylene ether sulfone) containing imide pendant groups. RSC Adv 7(67):42468–42475
35.
Zurück zum Zitat Cheng H, Xu J, Ma L, Xu L, Liu B, Wang Z (2014) Preparation and characterization of sulfonated poly (arylene ether ketone) copolymers with pendant sulfoalkyl groups as proton exchange membranes. J Power Sources 260:307–316 Cheng H, Xu J, Ma L, Xu L, Liu B, Wang Z (2014) Preparation and characterization of sulfonated poly (arylene ether ketone) copolymers with pendant sulfoalkyl groups as proton exchange membranes. J Power Sources 260:307–316
36.
Zurück zum Zitat Xu L, Han H, Liu M, Xu J, Ni H, Zhang H (2015) Phosphotungstic acid embedded sulfonated poly (arylene ether ketone sulfone) copolymers with amino groups for proton exchange membranes. RSC Adv 5(101):83320–83330 Xu L, Han H, Liu M, Xu J, Ni H, Zhang H (2015) Phosphotungstic acid embedded sulfonated poly (arylene ether ketone sulfone) copolymers with amino groups for proton exchange membranes. RSC Adv 5(101):83320–83330
37.
Zurück zum Zitat Li J, Wang S, Liu F, Tian X, Wang X, Chen H (2018) HT-PEMs based on nitrogen-heterocycle decorated poly (arylene ether ketone) with enhanced proton conductivity and excellent stability. Int J Hydrog Energy 43(33):16248–16257 Li J, Wang S, Liu F, Tian X, Wang X, Chen H (2018) HT-PEMs based on nitrogen-heterocycle decorated poly (arylene ether ketone) with enhanced proton conductivity and excellent stability. Int J Hydrog Energy 43(33):16248–16257
38.
Zurück zum Zitat Elton L (1977) Rudolf peierls and theoretical physics: edited by IJR Aitchison and JE Paton, Pergamon Elton L (1977) Rudolf peierls and theoretical physics: edited by IJR Aitchison and JE Paton, Pergamon
39.
Zurück zum Zitat Zhao S, Liao J, Li D, Wang X, Li N (2018) Blending of compatible polymer of intrinsic microporosity (PIM-1) with Tröger's base polymer for gas separation membranes. J Membr Sci 566:77–86 Zhao S, Liao J, Li D, Wang X, Li N (2018) Blending of compatible polymer of intrinsic microporosity (PIM-1) with Tröger's base polymer for gas separation membranes. J Membr Sci 566:77–86
40.
Zurück zum Zitat Chung TS, Lin WH, Vora RH (2001) Gas transport properties of 6FDA-durene/1, 3-phenylenediamine (mPDA) copolyimides. J Appl Polym Sci 81(14):3552–3564 Chung TS, Lin WH, Vora RH (2001) Gas transport properties of 6FDA-durene/1, 3-phenylenediamine (mPDA) copolyimides. J Appl Polym Sci 81(14):3552–3564
41.
Zurück zum Zitat Li B, Duan Y, Luebke D, Morreale B (2013) Advances in CO2 capture technology: a patent review. Appl Energy 102:1439–1447 Li B, Duan Y, Luebke D, Morreale B (2013) Advances in CO2 capture technology: a patent review. Appl Energy 102:1439–1447
42.
Zurück zum Zitat Rada ZH, Abid HR, Shang J, He Y, Webley P, Liu S (2015) Effects of amino functionality on uptake of CO2, CH4 and selectivity of CO2/CH4 on titanium based MOFs. Fuel 160:318–327 Rada ZH, Abid HR, Shang J, He Y, Webley P, Liu S (2015) Effects of amino functionality on uptake of CO2, CH4 and selectivity of CO2/CH4 on titanium based MOFs. Fuel 160:318–327
43.
Zurück zum Zitat Bera D, Bandyopadhyay P, Ghosh S, Banerjee S, Padmanabhan V (2015) Highly gas permeable aromatic polyamides containing adamantane substituted triphenylamine. J Membr Sci 474:20–31 Bera D, Bandyopadhyay P, Ghosh S, Banerjee S, Padmanabhan V (2015) Highly gas permeable aromatic polyamides containing adamantane substituted triphenylamine. J Membr Sci 474:20–31
44.
Zurück zum Zitat Mal K, Naskar S, Sen SK, Natarajan R, Das I (2016) Tandem Chemoselective 1, 2−/1, 4-migration of the Thio Group in Keto Thioesters: an efficient approach to substituted Butenolides. Adv Synth Catal 358(20):3212–3230 Mal K, Naskar S, Sen SK, Natarajan R, Das I (2016) Tandem Chemoselective 1, 2−/1, 4-migration of the Thio Group in Keto Thioesters: an efficient approach to substituted Butenolides. Adv Synth Catal 358(20):3212–3230
45.
Zurück zum Zitat Bunz UH, Enkelmann V, Kloppenburg L, Jones D, Shimizu KD, Claridge JB (1999) Solid-state structures of phenyleneethynylenes: comparison of monomers and polymers. Chem Mater 11(6):1416–1424 Bunz UH, Enkelmann V, Kloppenburg L, Jones D, Shimizu KD, Claridge JB (1999) Solid-state structures of phenyleneethynylenes: comparison of monomers and polymers. Chem Mater 11(6):1416–1424
46.
Zurück zum Zitat Thomas OD, Soo KJ, Peckham TJ, Kulkarni MP, Holdcroft S (2012) A stable hydroxide-conducting polymer. J Am Chem Soc 134(26):10753–10756PubMed Thomas OD, Soo KJ, Peckham TJ, Kulkarni MP, Holdcroft S (2012) A stable hydroxide-conducting polymer. J Am Chem Soc 134(26):10753–10756PubMed
47.
Zurück zum Zitat Lin X, Varcoe JR, Poynton SD, Liang X, Ong AL, Ran J (2013) Alkaline polymer electrolytes containing pendant dimethylimidazolium groups for alkaline membrane fuel cells. J Mater Chem A 1(24):7262–7269 Lin X, Varcoe JR, Poynton SD, Liang X, Ong AL, Ran J (2013) Alkaline polymer electrolytes containing pendant dimethylimidazolium groups for alkaline membrane fuel cells. J Mater Chem A 1(24):7262–7269
48.
Zurück zum Zitat Li X, Cheng Y, Zhang H, Wang S, Jiang Z, Guo R (2015) Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes. ACS Appl Mater Interfaces 7(9):5528–5537PubMed Li X, Cheng Y, Zhang H, Wang S, Jiang Z, Guo R (2015) Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes. ACS Appl Mater Interfaces 7(9):5528–5537PubMed
49.
Zurück zum Zitat Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279(1–2):1–49 Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279(1–2):1–49
50.
Zurück zum Zitat Maya E, Garcia-Yoldi I, Lozano A, de La Campa J, de Abajo J (2011) Synthesis, characterization, and gas separation properties of novel copolyimides containing adamantyl ester pendant groups. Macromolecules 44(8):2780–2790 Maya E, Garcia-Yoldi I, Lozano A, de La Campa J, de Abajo J (2011) Synthesis, characterization, and gas separation properties of novel copolyimides containing adamantyl ester pendant groups. Macromolecules 44(8):2780–2790
51.
Zurück zum Zitat Fu J, Das S, Xing G, Ben T, Valtchev V, Qiu S (2016) Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2. J Am Chem Soc 138(24):7673–7680PubMed Fu J, Das S, Xing G, Ben T, Valtchev V, Qiu S (2016) Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2. J Am Chem Soc 138(24):7673–7680PubMed
Metadaten
Titel
Poly(arylene ether ketone) containing amino and fluorenyl groups for highly selective of gas separation
verfasst von
Lei Hou
Zhe Wang
Jingmei Xu
Zhaoyu Chen
Publikationsdatum
01.10.2019
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 10/2019
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-019-1906-2

Weitere Artikel der Ausgabe 10/2019

Journal of Polymer Research 10/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.