Skip to main content
Erschienen in: Rheologica Acta 6-7/2021

03.05.2021 | Original Contribution

Poroviscoelasticity and compression-softening of agarose hydrogels

verfasst von: Abderrahim Ed-Daoui, Patrick Snabre

Erschienen in: Rheologica Acta | Ausgabe 6-7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Agarose hydrogels are poroviscoelastic materials that exhibit a waterlogged-crosslinked microstructure. Despite an extensive use in biotechnologies and numerous studies of the elastic properties of agarose gels, little is known about the compressible behavior and the microstructural changes of such fibrillar hydrogels under compression. The present work investigates the mechanical response of centimeter-sized pre-molded agarose cylinders when applying a compressive strain ramp over an extended range of loading speed and polymer concentration. One of the original contributions is the simultaneous monitoring of the changes in the hydrogel volume to determine the Poisson’s ratio through a spatiotemporal method. The linear poroelastic response of agarose hydrogels shows a compressible behavior at strain rates less than 0.7 % s−1. The critical compressive strain of a few percent at the onset of the non-linear regime and the always positive Poisson’s ratio decrease when applying a slow compressive ramp. The mechanical response in the linear regime is typical of a deformation mode either dominated by the bending of semiflexible strands (enthalpic regime) or by the stretching of the network (entropic regime) at higher agarose concentration. Cyclic linear shear deformations superimposed to a compressive strain from 0.5 up to 40% further give evidence of a compression-softening of the network causing the transition to the non-linear regime without dependence upon the network topology and connectivity. Finally, the buckling-induced aging of the network under a weak compression and the poroviscoelasticity of the hydrogel are shown to impact the relaxation of the normal stress and the equilibrium stress.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The equilibrium height ho of the pre-molded gel is slightly less than the height H of the duralumin mold as the sol-gel transition induces a small water release and a volume retraction of the sample as reported by Mao et al. (2016). Here, the hydrogel under tension in the mold at room temperature undergoes a uniform spontaneous shrinkage when demolding the cylinder with an equilibrium contraction ratio χ = (H − ho)/H which increases linearly with the polymer concentration and reaches a plateau value χ = (3.1 ± 0.2) % at agarose mass concentrations c > 1.5 wt%.
 
2
Note that the slow compression of the L3 hydrogel in air causes an early exudation of water from the outer free surface (third column in Fig. 5) and an apparent slight increase in the rate of swelling of the cylinder with a consequent overestimation of the Poisson's ratio as determined by the spatiotemporal method.
 
3
The deformation of the agarose hydrogel appears as reversible after a fast or a slow 15 % compressive strain ramp and the material nearly recovers the initial shape within half an hour when removing the load. The hydrogel can further be compressed up to a 90% strain without breaking under an extremely low loading speed dh/dt = 0.1μm/s (/dt ≈ 7.1 10−4 % s−1) at agarose concentrations from 0.5 wt% up to 12 wt% as previously reported for gellan gels for polymer concentrations 0.81 wt% < c < 2.5 wt% (Nakamura et al. 2001).
 
4
For highly diluted agarose and biopolymer hydrogels close to the percolation threshold (ϕg ≈ 0.1%  < ϕ < 0.5%), experimental values of the elastic exponent β are quite dispersed in the range from 1.8 up to 4 (Tokita and Hikichi 1987; Clark and Ross-Murphy 1987; Kawabata et al. 1996; Mohammed et al. 1998; Fujii et al. 2000; Gunasekaran and Yoon 2014). Considering agarose fibers as stiff linear rods, the scalar percolation theory from de Gennes (1980) gives a critical exponent β ≈ 1.9 (Djabourov 1991). On the other hand, a vectorial percolation model taking into account the bending of fibers predicts a higher value β ≈ 3.96 of the elastic exponent (Sahimi 1986). However, the dispersion in the experimental values of the scaling exponent in the close vicinity of the gel point also arises both from loose chains (free chains) that gradually vanish upon increasing the agarose concentration and from a greater sensitivity of the hydrogel elasticity to the molecular weight distribution of the polymer.
 
5
One strand of length ξ and cross section r2 in a volume of size ξ corresponds to a fiber volume fraction ϕ - ϕg ∝ r2ξ/ξ3 = r2/ξ2 and a mesh size ξ ∝ r (ϕ - ϕg)λ) with a scaling exponent λ =  − 1/2. The scaling relation ξ ∝ (ϕ - ϕg)-1/2 describes the concentration dependence of the pore diameter in agarose hydrogels both for the larger and the smaller free spaces at fiber volume fraction ϕ < 3 wt% (Fig. 16in Appendix 5.1).
 
6
The typical mesh size of concentrated agarose hydrogels scales as ξ ∝ εc ∝ (ϕ - ϕg)-0.45 with a scaling exponent λ ≈  − 0.45 less than the expected value λ =  − 0.5 for a sparse semiflexible network since the radius r of strands is no longer small enough compared to the mean diameter ξ of pores.
 
7
The forced permeation time t* ∝ η R2/(E k) of a solvent through a semiflexible hydrogel under compression scales as the square of the cylinder radius R and as the inverse of the elastic modulus E of the soft material where k ∝ ξ2 is the hydraulic permeability of the network and η the viscosity of the solvent (Doi 2009).
 
8
A minimum compressive strain ε = 4% is required for an accurate determination of the drained Poisson’s ratio using the spatiotemporal method.
 
Literatur
Zurück zum Zitat Matsuhashi T (1990) Agar. In: Harris P (ed) Food gels. Elsevier Applied Science, New York, pp 1–51 Matsuhashi T (1990) Agar. In: Harris P (ed) Food gels. Elsevier Applied Science, New York, pp 1–51
Zurück zum Zitat Stanley NF (2006) Agars. In: Stephen AM, Philips GO (eds) Food polysaccharides and their Applications, 2nd edn. CRC Press, Boca Raton, pp 217–238CrossRef Stanley NF (2006) Agars. In: Stephen AM, Philips GO (eds) Food polysaccharides and their Applications, 2nd edn. CRC Press, Boca Raton, pp 217–238CrossRef
Zurück zum Zitat van Oosten ASG, Vahabi M, Licup AJ, Sharma A, Galie PA, MacKintosh FC, Janmey PA (2016) Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening. Sci Rep 6:19270. https://doi.org/10.1038/srep19270CrossRef van Oosten ASG, Vahabi M, Licup AJ, Sharma A, Galie PA, MacKintosh FC, Janmey PA (2016) Uncoupling shear and uniaxial elastic moduli of semiflexible biopolymer networks: compression-softening and stretch-stiffening. Sci Rep 6:19270. https://​doi.​org/​10.​1038/​srep19270CrossRef
Zurück zum Zitat von Terzaghi K (1925) Erdbaumechanik auf bodenphysikalischer Grundlage. Leipzig and Vienna, Franz Deuticke, 399 pages von Terzaghi K (1925) Erdbaumechanik auf bodenphysikalischer Grundlage. Leipzig and Vienna, Franz Deuticke, 399 pages
Metadaten
Titel
Poroviscoelasticity and compression-softening of agarose hydrogels
verfasst von
Abderrahim Ed-Daoui
Patrick Snabre
Publikationsdatum
03.05.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Rheologica Acta / Ausgabe 6-7/2021
Print ISSN: 0035-4511
Elektronische ISSN: 1435-1528
DOI
https://doi.org/10.1007/s00397-021-01267-3

Weitere Artikel der Ausgabe 6-7/2021

Rheologica Acta 6-7/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.