Skip to main content
Erschienen in: Mechanics of Composite Materials 6/2023

14.01.2023

Prediction of GFRP Self-Heating Kinetics Under Cyclic Bending

verfasst von: A. V. Ignatova, A. V. Bezmelnitsyn, N. A. Olivenko, O. A. Kudryavtsev, S. B. Sapozhnikov, A. D. Shavshina

Erschienen in: Mechanics of Composite Materials | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Self-heating effect caused by internal friction is a meaningful problem in design and operation of cyclically loaded structural elements made of fiber-reinforced plastics. Vibrations of aerospace structures with large amplitudes and high frequencies, as well as accelerated mechanical testing can lead to an increase of the composite temperature, degradation of the mechanical properties and premature failure. This research aimed to study the kinetics of GFRP self-heating under reversed bending. A low-parameter analytical model was developed to describe the kinetics of composite self-heating under normal convective heat transfer. The original wedgeshaped specimen and the experimental setup were developed to verify the simulation results. Cyclic bending tests were carried out at the frequencies from 10 to 20 Hz and displacement amplitudes from 4 to 7 mm. The model proposed enables to predict the dependence of the maximum composite temperature on time, frequency, and amplitude with reasonable accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E. J. Barbero, Introduction to Composite Materials Design, CRC Press, New York, NY (1998). E. J. Barbero, Introduction to Composite Materials Design, CRC Press, New York, NY (1998).
2.
Zurück zum Zitat G. Voudouris, D. D. Maio, and I. A. Sever, “Experimental fatigue behaviour of CFRP composites under vibration and thermal loading,” Int. J. Fatigue, 140, 105791 (2020).CrossRef G. Voudouris, D. D. Maio, and I. A. Sever, “Experimental fatigue behaviour of CFRP composites under vibration and thermal loading,” Int. J. Fatigue, 140, 105791 (2020).CrossRef
3.
Zurück zum Zitat A. K. Shojaei and P. Volgers, “Fatigue damage assessment of unfilled polymers including self-heating effects,” Int. J. Fatigue, 100, 367-376 (2017).CrossRef A. K. Shojaei and P. Volgers, “Fatigue damage assessment of unfilled polymers including self-heating effects,” Int. J. Fatigue, 100, 367-376 (2017).CrossRef
4.
Zurück zum Zitat A. Katunin, “Thermal fatigue of polymeric composites under repeated loading,” J. Reinf. Plast. and Compos., 31, No. 15, 1037-1044 (2012).CrossRef A. Katunin, “Thermal fatigue of polymeric composites under repeated loading,” J. Reinf. Plast. and Compos., 31, No. 15, 1037-1044 (2012).CrossRef
5.
Zurück zum Zitat A. Goel, K. K. Chawla, U. K. Vaidya, N. Chawla, and M. Koopman, “Characterization of fatigue behavior of long fiber reinforced thermoplastic (LFT) composites,” Mater. Characterization, 60, No. 6, 537-544 (2009).CrossRef A. Goel, K. K. Chawla, U. K. Vaidya, N. Chawla, and M. Koopman, “Characterization of fatigue behavior of long fiber reinforced thermoplastic (LFT) composites,” Mater. Characterization, 60, No. 6, 537-544 (2009).CrossRef
6.
Zurück zum Zitat P. P. Oldyrev, “Long-cycle fatigue of a glass-plastic under soft and stiff load,” Mech. Compos. Mater., 17, 142-150 (1981).CrossRef P. P. Oldyrev, “Long-cycle fatigue of a glass-plastic under soft and stiff load,” Mech. Compos. Mater., 17, 142-150 (1981).CrossRef
7.
Zurück zum Zitat P. P. Oldyrev, “Self-heating and failure of plastics under cyclic loading,” Mekh. Polimer., 3, No. 3, 483-492 (1967). P. P. Oldyrev, “Self-heating and failure of plastics under cyclic loading,” Mekh. Polimer., 3, No. 3, 483-492 (1967).
8.
Zurück zum Zitat V. Bellenger, A. Tcharkhtchi. and Ph. Castaing, “Thermal and mechanical fatigue of a PA66/glass fibers composite material,” Int. J. Fatigue, 28, No. 10, 1348-1352 (2006).CrossRef V. Bellenger, A. Tcharkhtchi. and Ph. Castaing, “Thermal and mechanical fatigue of a PA66/glass fibers composite material,” Int. J. Fatigue, 28, No. 10, 1348-1352 (2006).CrossRef
9.
Zurück zum Zitat J. M. Kenny and M. Marchetti, “Elasto-plastic behavior of thermoplastic composite laminates under cyclic loading,” Composite Structures, 32, 375-382 (1995).CrossRef J. M. Kenny and M. Marchetti, “Elasto-plastic behavior of thermoplastic composite laminates under cyclic loading,” Composite Structures, 32, 375-382 (1995).CrossRef
10.
Zurück zum Zitat F. Lahuerta, R. P. L. Nijssen, F. P. van der Meer and L. J. Sluys, “Experimental–computational study towards heat generation in thick laminates under fatigue loading,” Int. J. Fatigue, 80, 121-127 (2015).CrossRef F. Lahuerta, R. P. L. Nijssen, F. P. van der Meer and L. J. Sluys, “Experimental–computational study towards heat generation in thick laminates under fatigue loading,” Int. J. Fatigue, 80, 121-127 (2015).CrossRef
11.
Zurück zum Zitat A. Katunin and M. Fidali, “Self-heating of polymeric laminated composite plates under the resonant vibrations: Theoretical and experimental study,” Polym. Compos., 33, No. 1, 138-146 (2012).CrossRef A. Katunin and M. Fidali, “Self-heating of polymeric laminated composite plates under the resonant vibrations: Theoretical and experimental study,” Polym. Compos., 33, No. 1, 138-146 (2012).CrossRef
12.
Zurück zum Zitat A. Katunin, “Analysis of influence of fibre type and orientation on dynamic properties of polymer laminates for evaluation of their damping and self-heating,” Sci. and Eng. Compos. Mater., 24, No. 3, 387-399 (2017).CrossRef A. Katunin, “Analysis of influence of fibre type and orientation on dynamic properties of polymer laminates for evaluation of their damping and self-heating,” Sci. and Eng. Compos. Mater., 24, No. 3, 387-399 (2017).CrossRef
13.
Zurück zum Zitat S. Mortazavian and A. Fatemi, “Fatigue behavior and modeling of short fiber reinforced polymer composites including anisotropy and temperature effects,” Int. J. Fatigue, 77, 12-27 (2015).CrossRef S. Mortazavian and A. Fatemi, “Fatigue behavior and modeling of short fiber reinforced polymer composites including anisotropy and temperature effects,” Int. J. Fatigue, 77, 12-27 (2015).CrossRef
14.
Zurück zum Zitat M. Naderi and M. M. Khonsari, “Thermodynamic analysis of fatigue failure in a composite laminate,” Mech. Mater., 46, 113-122 (2012).CrossRef M. Naderi and M. M. Khonsari, “Thermodynamic analysis of fatigue failure in a composite laminate,” Mech. Mater., 46, 113-122 (2012).CrossRef
15.
Zurück zum Zitat S. B. Clay and P. M. Knoth, “Experimental results of fatigue testing for calibration and validation of composite progressive damage analysis methods,” J. Compos. Mater.; 51, No. 15, 2083-2100 (2017).CrossRef S. B. Clay and P. M. Knoth, “Experimental results of fatigue testing for calibration and validation of composite progressive damage analysis methods,” J. Compos. Mater.; 51, No. 15, 2083-2100 (2017).CrossRef
16.
Zurück zum Zitat J. Huang, C. Li and W. Liu, “Investigation of internal friction and fracture fatigue entropy of CFRP laminates with various stacking sequences subjected to fatigue loading,” Thin-Walled Struct., 155, 106978 (2020).CrossRef J. Huang, C. Li and W. Liu, “Investigation of internal friction and fracture fatigue entropy of CFRP laminates with various stacking sequences subjected to fatigue loading,” Thin-Walled Struct., 155, 106978 (2020).CrossRef
17.
Zurück zum Zitat B. Esmaeillou, P. Ferreira, V. Bellenger, and A. Tcharkhtchi, “Fatigue behavior of polyamide 66/glass fiber under various kinds of applied load,” Polym. Compos., 33, No. 4, 540-547 (2012).CrossRef B. Esmaeillou, P. Ferreira, V. Bellenger, and A. Tcharkhtchi, “Fatigue behavior of polyamide 66/glass fiber under various kinds of applied load,” Polym. Compos., 33, No. 4, 540-547 (2012).CrossRef
18.
Zurück zum Zitat Y. Ueki, “High-speed bending-fatigue testing of composite materials,” IOP Conf. Ser.: Mater. Sci. and Eng., 388, No. 1, 012008 (2018). Y. Ueki, “High-speed bending-fatigue testing of composite materials,” IOP Conf. Ser.: Mater. Sci. and Eng., 388, No. 1, 012008 (2018).
19.
Zurück zum Zitat L. Muller, J.-M. Roche, A. Hurmane, C. Peyrac, and L. Gornet, “Experimental monitoring of the self-heating properties of thermoplastic composite materials during tensile and cyclic tests,” MATEC Web of Conf., 165, 07003 (2018).CrossRef L. Muller, J.-M. Roche, A. Hurmane, C. Peyrac, and L. Gornet, “Experimental monitoring of the self-heating properties of thermoplastic composite materials during tensile and cyclic tests,” MATEC Web of Conf., 165, 07003 (2018).CrossRef
20.
Zurück zum Zitat S. Mortazavian, A. Fatemi, S. R. Mellott, and A. Khosrovaneh, “Effect of cycling frequency and self-heating on fatigue behavior of reinforced and unreinforced thermoplastic polymers,” Polym. Eng. and Sci., 55, No. 10, 2355-2367 (2015).CrossRef S. Mortazavian, A. Fatemi, S. R. Mellott, and A. Khosrovaneh, “Effect of cycling frequency and self-heating on fatigue behavior of reinforced and unreinforced thermoplastic polymers,” Polym. Eng. and Sci., 55, No. 10, 2355-2367 (2015).CrossRef
21.
Zurück zum Zitat L. Gornet, O. Wesphal, C. Burtin, J.-L. Bailleul, P. Rozycki, and L. Stainier, “Rapid determination of the high cycle fatigue limit curve of carbon fiber epoxy matrix composite laminates by thermography methodology: tests and finite element simulations,” Procedia Eng., 66, 697-704 (2013).CrossRef L. Gornet, O. Wesphal, C. Burtin, J.-L. Bailleul, P. Rozycki, and L. Stainier, “Rapid determination of the high cycle fatigue limit curve of carbon fiber epoxy matrix composite laminates by thermography methodology: tests and finite element simulations,” Procedia Eng., 66, 697-704 (2013).CrossRef
22.
Zurück zum Zitat T. J. Adam and P. Horst, “Fatigue damage and fatigue limits of a GFRP angle-ply laminate tested under very high cycle fatigue loading,” Int. J. Fatigue, 99, No. 1, 202-214 (2017).CrossRef T. J. Adam and P. Horst, “Fatigue damage and fatigue limits of a GFRP angle-ply laminate tested under very high cycle fatigue loading,” Int. J. Fatigue, 99, No. 1, 202-214 (2017).CrossRef
23.
Zurück zum Zitat W. Harizi, R. Azzouz, A. T. Martins, K. Hamdi, Z. Aboura and K. Khellil, “Electrical resistance variation during tensile and self-heating tests conducted on thermoplastic polymer-matrix composites,” Compos. Struct., 224, 111001 (2019).CrossRef W. Harizi, R. Azzouz, A. T. Martins, K. Hamdi, Z. Aboura and K. Khellil, “Electrical resistance variation during tensile and self-heating tests conducted on thermoplastic polymer-matrix composites,” Compos. Struct., 224, 111001 (2019).CrossRef
24.
Zurück zum Zitat S. B. Ratner and V. I. Korobov, “Self-heating of plastics during cyclic deformation,” Mekh. Polimer., 1, No. 3, 93-100 (1965). S. B. Ratner and V. I. Korobov, “Self-heating of plastics during cyclic deformation,” Mekh. Polimer., 1, No. 3, 93-100 (1965).
25.
Zurück zum Zitat S. B. Sapozhnikov, A. A. Shabley, and A. V. Ignatova, “Predicting the kinetics of hysteretic self-heating of GFRPs under high-frequency cyclic loading,” Compos. Struct., 226, No. 15, 111214 (2019). S. B. Sapozhnikov, A. A. Shabley, and A. V. Ignatova, “Predicting the kinetics of hysteretic self-heating of GFRPs under high-frequency cyclic loading,” Compos. Struct., 226, No. 15, 111214 (2019).
26.
Zurück zum Zitat A. Katunin and A. Wronkowicz, “Characterization of failure mechanisms of composite structures subjected to fatigue dominated by the self-heating effect,” Compos. Struct., 180, 1-8 (2017).CrossRef A. Katunin and A. Wronkowicz, “Characterization of failure mechanisms of composite structures subjected to fatigue dominated by the self-heating effect,” Compos. Struct., 180, 1-8 (2017).CrossRef
27.
Zurück zum Zitat A. Katunin, “Domination of self-heating effect during fatigue of polymeric composites,” Procedia Struct. Integrity, 5, 93-98 (2017).CrossRef A. Katunin, “Domination of self-heating effect during fatigue of polymeric composites,” Procedia Struct. Integrity, 5, 93-98 (2017).CrossRef
28.
Zurück zum Zitat A. Katunin, “Evaluation of criticality of self-heating of polymer composites by estimating the heat dissipation rate,” Mech. Compos. Mater., 54, No. 1, 53-60 (2018).CrossRef A. Katunin, “Evaluation of criticality of self-heating of polymer composites by estimating the heat dissipation rate,” Mech. Compos. Mater., 54, No. 1, 53-60 (2018).CrossRef
29.
Zurück zum Zitat A. Mahmoudi and B. Mohammadi, “On the evaluation of damage-entropy model in cross-ply laminated composites,” Eng. Fracture Mech., 219, 106626 (2019).CrossRef A. Mahmoudi and B. Mohammadi, “On the evaluation of damage-entropy model in cross-ply laminated composites,” Eng. Fracture Mech., 219, 106626 (2019).CrossRef
30.
Zurück zum Zitat F. Lahuerta, T. Westphal, and R. P. L. Nijssen, “Self-heating forecasting for thick laminate specimens in fatigue,” J. Physics: Conf. Ser., 555, 012062 (2014). F. Lahuerta, T. Westphal, and R. P. L. Nijssen, “Self-heating forecasting for thick laminate specimens in fatigue,” J. Physics: Conf. Ser., 555, 012062 (2014).
31.
Zurück zum Zitat A. Katunin, “Finite element simulation of self-heating effect and thermal fatigue of viscoelastic polymer composites,” Computer Methods in Mater. Sci., 12, No. 3, 225-230 (2012). A. Katunin, “Finite element simulation of self-heating effect and thermal fatigue of viscoelastic polymer composites,” Computer Methods in Mater. Sci., 12, No. 3, 225-230 (2012).
32.
Zurück zum Zitat A. Mahmoudi and B. Mohammadi, “Theoretical-experimental investigation of temperature evolution in laminated composites due to fatigue loading,” Compos. Struct., 225, 110972 (2019).CrossRef A. Mahmoudi and B. Mohammadi, “Theoretical-experimental investigation of temperature evolution in laminated composites due to fatigue loading,” Compos. Struct., 225, 110972 (2019).CrossRef
33.
Zurück zum Zitat W. Ramberg and W. R. Osgood, “Description of stress-strain curves by three parameters,” Technical Note No. 902, National Advisory Committee for Aeronautics, Washington DC (1943). W. Ramberg and W. R. Osgood, “Description of stress-strain curves by three parameters,” Technical Note No. 902, National Advisory Committee for Aeronautics, Washington DC (1943).
34.
Zurück zum Zitat A. V. Erpalov and R. A. Peshkov, “Probabilistic-based fatigue damage estimation of switching stationary gaussian random time histories,” // A. A. Radionov and V. R. Gasiyarov (eds), Proc. 6th Int. Conf. on Industrial Eng. (ICIE 2020), Lecture Notes in Mech. Eng., Springer, Cham, Switzerland (2021), pp. 527-536. A. V. Erpalov and R. A. Peshkov, “Probabilistic-based fatigue damage estimation of switching stationary gaussian random time histories,” // A. A. Radionov and V. R. Gasiyarov (eds), Proc. 6th Int. Conf. on Industrial Eng. (ICIE 2020), Lecture Notes in Mech. Eng., Springer, Cham, Switzerland (2021), pp. 527-536.
36.
Zurück zum Zitat H. Kuehling, Physics Handbook [in Russian], Mir, Moscow (1985). H. Kuehling, Physics Handbook [in Russian], Mir, Moscow (1985).
37.
Zurück zum Zitat H. Stöcker, Taschenbuch der Physik: Formeln, Tabellen, Übersichten [in Deutsch], Wissenschaftlicher Verlag Harri Deutsch, Frankfurt am Main (2005). H. Stöcker, Taschenbuch der Physik: Formeln, Tabellen, Übersichten [in Deutsch], Wissenschaftlicher Verlag Harri Deutsch, Frankfurt am Main (2005).
38.
Zurück zum Zitat D. Rittel and Y. Rabin, “Investigation of the heat generated during cyclic loading of two glassy polymers. Part II: Thermal analysis,” Mech. Mater., 32, No. 3, 149-159 (2000).CrossRef D. Rittel and Y. Rabin, “Investigation of the heat generated during cyclic loading of two glassy polymers. Part II: Thermal analysis,” Mech. Mater., 32, No. 3, 149-159 (2000).CrossRef
Metadaten
Titel
Prediction of GFRP Self-Heating Kinetics Under Cyclic Bending
verfasst von
A. V. Ignatova
A. V. Bezmelnitsyn
N. A. Olivenko
O. A. Kudryavtsev
S. B. Sapozhnikov
A. D. Shavshina
Publikationsdatum
14.01.2023
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 6/2023
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10068-z

Weitere Artikel der Ausgabe 6/2023

Mechanics of Composite Materials 6/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.