Skip to main content
Erschienen in: Mechanics of Composite Materials 6/2023

14.01.2023

The Effect of Packing Type on the Equivalent Modulus and Stress Concentrations of Unidirectional Composites

verfasst von: J. Simon, A. Jain

Erschienen in: Mechanics of Composite Materials | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A representative volume element (RVE) with 11 uniform fiber packings is studied. The effective modulus of RVE corresponding to the different packing types is evaluated using the finite-element modelling and a semianalytical multistep rule of mixtures. The equivalent modulus of the RVE depends on the packing type. The elongated triangular packing type was closest to the random packing type. All the packing types displayed a strong transverse isotropy with less than a 1% variation in equivalent modulus in the two transverse directions. The multistep rule of mixtures could allow for changes in the moduli due to the different packing types. However, this method consistently underpredicted the equivalent modulus compared with full FE results. The effective modulus for the random packing closest to that of the elongated triangular packing type. The stress distribution in the interface varied strongly with packing type and loading direction. The sparsest packing type, i.e., the truncated hexagonal one led to both the highest equivalent modulus and the highest stress concentrations in the interface. The densest packing type, i.e., the triangular packing, led to the lowest modulus and lowest radial stress concentrations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. D. Agarwal, L. J. Broutman, and K. Chandrashekhara, Analysis and Performance of Fiber Composites, John Wiley & Sons (2006). B. D. Agarwal, L. J. Broutman, and K. Chandrashekhara, Analysis and Performance of Fiber Composites, John Wiley & Sons (2006).
2.
Zurück zum Zitat E. K. Gamstedt and B. A. Sjögren, “Micromechanisms in tension-compression fatigue of composite laminates containing transverse plies.” Composites Science and Technology. 59, No. 2, 167-178 (1999).CrossRef E. K. Gamstedt and B. A. Sjögren, “Micromechanisms in tension-compression fatigue of composite laminates containing transverse plies.” Composites Science and Technology. 59, No. 2, 167-178 (1999).CrossRef
3.
Zurück zum Zitat H. M. Sertse et al., “Challenge problems for the benchmarking of micromechanics analysis: Level I initial results,” Journal of Composite Materials, 52, No. 1, 61-80 (2017).CrossRef H. M. Sertse et al., “Challenge problems for the benchmarking of micromechanics analysis: Level I initial results,” Journal of Composite Materials, 52, No. 1, 61-80 (2017).CrossRef
4.
Zurück zum Zitat M. G. Knight, L. C. Wrobel, and J. L. Henshall, “Micromechanical response of fibre-reinforced materials using the boundary element technique,” Composite Structures, 62, 341-352 (2003).CrossRef M. G. Knight, L. C. Wrobel, and J. L. Henshall, “Micromechanical response of fibre-reinforced materials using the boundary element technique,” Composite Structures, 62, 341-352 (2003).CrossRef
5.
Zurück zum Zitat B. Sabuncuoglu et al., “Micro-scale finite element analysis of stress concentrations in steel fiber composites under transverse loading,” Journal of Composite Materials, 49, 1057-1069 (2014).CrossRef B. Sabuncuoglu et al., “Micro-scale finite element analysis of stress concentrations in steel fiber composites under transverse loading,” Journal of Composite Materials, 49, 1057-1069 (2014).CrossRef
6.
Zurück zum Zitat A. R. Maligno, N. A. Warrior, and A. C. Long, “Finite element investigations on the microstructure of fibre-reinforced composites,” Express Polymer Letters, 2, 665-676 (2008).CrossRef A. R. Maligno, N. A. Warrior, and A. C. Long, “Finite element investigations on the microstructure of fibre-reinforced composites,” Express Polymer Letters, 2, 665-676 (2008).CrossRef
7.
Zurück zum Zitat S. Malekmohammadi, Efficient Multi-Scale Modelling of Viscoelastic Composites with Different Microstructures, University of British Columbia (2014). S. Malekmohammadi, Efficient Multi-Scale Modelling of Viscoelastic Composites with Different Microstructures, University of British Columbia (2014).
8.
Zurück zum Zitat S. Kari et al., “Computational evaluation of effective material properties of composites reinforced by randomly distributed spherical particles,” Composite Structures, 77, 223-231 (2007).CrossRef S. Kari et al., “Computational evaluation of effective material properties of composites reinforced by randomly distributed spherical particles,” Composite Structures, 77, 223-231 (2007).CrossRef
9.
Zurück zum Zitat M. V. Pathan et al., “A new algorithm to generate representative volume elements of composites with cylindrical or spherical fillers,” Composites, Part B, 110, 267-278 (2017).CrossRef M. V. Pathan et al., “A new algorithm to generate representative volume elements of composites with cylindrical or spherical fillers,” Composites, Part B, 110, 267-278 (2017).CrossRef
10.
Zurück zum Zitat X. Wang et al., “A long-range force based random method for generating anisotropic 2D fiber arrangement statistically equivalent to real composites,” Composites Science and Technology, 180, 33-43 (2019).CrossRef X. Wang et al., “A long-range force based random method for generating anisotropic 2D fiber arrangement statistically equivalent to real composites,” Composites Science and Technology, 180, 33-43 (2019).CrossRef
11.
Zurück zum Zitat A. A. Gusev, P. J. Hine, and I. M. Ward, “Fiber packing and elastic properties of a transversely random unidirectional glass/epoxy composite,” Composites Science and Technology, 60, No. 4, 535-541 (2000).CrossRef A. A. Gusev, P. J. Hine, and I. M. Ward, “Fiber packing and elastic properties of a transversely random unidirectional glass/epoxy composite,” Composites Science and Technology, 60, No. 4, 535-541 (2000).CrossRef
12.
Zurück zum Zitat A. Wongsto and S. Li, “Micromechanical FE analysis of UD fibre-reinforced composites with fibres distributed at random over the transverse cross-section,” Composites, Part A, 36, No. 9, 1246-1266 (2005).CrossRef A. Wongsto and S. Li, “Micromechanical FE analysis of UD fibre-reinforced composites with fibres distributed at random over the transverse cross-section,” Composites, Part A, 36, No. 9, 1246-1266 (2005).CrossRef
13.
Zurück zum Zitat A. Heppes, “Some densest two-size disc packings in the plane,” Discrete & Computational Geometry, 30, No. 2, 241-262 (2003).CrossRef A. Heppes, “Some densest two-size disc packings in the plane,” Discrete & Computational Geometry, 30, No. 2, 241-262 (2003).CrossRef
15.
Zurück zum Zitat S. Choi and W. Ji, “Effects of fiber arrangements on stress distributions over the transverse cross section of unidirectionally continuous fiber-reinforced composites,” Composites Research. The Korean Society for Composite Materials, 33, No. 1, 30-37 (2020). S. Choi and W. Ji, “Effects of fiber arrangements on stress distributions over the transverse cross section of unidirectionally continuous fiber-reinforced composites,” Composites Research. The Korean Society for Composite Materials, 33, No. 1, 30-37 (2020).
16.
Zurück zum Zitat M. Hojo et al., “Effect of fiber array irregularities on microscopic interfacial normal stress states of transversely loaded UD-CFRP from viewpoint of failure initiation,” Composites Science and Technology, 69, No. 11, 1726-1734 (2009).CrossRef M. Hojo et al., “Effect of fiber array irregularities on microscopic interfacial normal stress states of transversely loaded UD-CFRP from viewpoint of failure initiation,” Composites Science and Technology, 69, No. 11, 1726-1734 (2009).CrossRef
17.
Zurück zum Zitat M. K. Hassanzadeh-Aghdam and R. Ansari, “Role of fiber arrangement in the thermal expanding behavior of unidirectional metal matrix composites,” Materials Chemistry and Physics, 252, 123273 (2020).CrossRef M. K. Hassanzadeh-Aghdam and R. Ansari, “Role of fiber arrangement in the thermal expanding behavior of unidirectional metal matrix composites,” Materials Chemistry and Physics, 252, 123273 (2020).CrossRef
18.
Zurück zum Zitat L. Zhang, L. J. Ernst, and H. R. Brouwer, “Transverse behaviour of a unidirectional composite (glass fibre reinforced unsaturated polyester). Part I. Influence of fibre packing geometry,” Mechanics of Materials, 27, No. 1, 13-36 (1998).CrossRef L. Zhang, L. J. Ernst, and H. R. Brouwer, “Transverse behaviour of a unidirectional composite (glass fibre reinforced unsaturated polyester). Part I. Influence of fibre packing geometry,” Mechanics of Materials, 27, No. 1, 13-36 (1998).CrossRef
19.
Zurück zum Zitat A. R. Maligno, N. A. Warrior, and A. C. Long, “Effects of inter-fibre spacing on damage evolution in unidirectional (UD) fibre-reinforced composites,”. European Journal of Mechanics-A/Solids, 28, No. 4, 768-776, (2009).CrossRef A. R. Maligno, N. A. Warrior, and A. C. Long, “Effects of inter-fibre spacing on damage evolution in unidirectional (UD) fibre-reinforced composites,”. European Journal of Mechanics-A/Solids, 28, No. 4, 768-776, (2009).CrossRef
20.
Zurück zum Zitat R. J. D’Mello and A. M. Waas, “Influence of unit cell size and fiber packing on the transverse tensile response of fiber reinforced composites,” Materials. Multidisciplinary Digital Publishing Institute, 12, No. 16, 2565 (2019). R. J. D’Mello and A. M. Waas, “Influence of unit cell size and fiber packing on the transverse tensile response of fiber reinforced composites,” Materials. Multidisciplinary Digital Publishing Institute, 12, No. 16, 2565 (2019).
21.
Zurück zum Zitat J. N. Goodier, “Concentration of stress around spherical and cylindrical inclusions and flaws,” TASME, 55, 39 (1933). J. N. Goodier, “Concentration of stress around spherical and cylindrical inclusions and flaws,” TASME, 55, 39 (1933).
22.
Zurück zum Zitat C. Heinrich et al., “The influence of the representative volume element (RVE) size on the homogenized response of cured fiber composites,” Modelling and Simulation in Materials Science and Engineering. IOP Publishing, 20, No. 7, 75007 (2012). C. Heinrich et al., “The influence of the representative volume element (RVE) size on the homogenized response of cured fiber composites,” Modelling and Simulation in Materials Science and Engineering. IOP Publishing, 20, No. 7, 75007 (2012).
23.
Zurück zum Zitat B. Sabuncuoglu, L. Gorbatikh, and S. V. Lomov, “Analysis of stress concentrations in transversely loaded steel-fiber composites with nano-reinforced interphases,” International Journal of Solids and Structures, 130, 248-257 (2018).CrossRef B. Sabuncuoglu, L. Gorbatikh, and S. V. Lomov, “Analysis of stress concentrations in transversely loaded steel-fiber composites with nano-reinforced interphases,” International Journal of Solids and Structures, 130, 248-257 (2018).CrossRef
24.
Zurück zum Zitat A. R. Melro, P. P. Camanho, and S. T. Pinho, “Generation of random distribution of fibres in long-fibre reinforced composites,” Composites Science and Technology, 68, No. 9, 2092-2102 (2008).CrossRef A. R. Melro, P. P. Camanho, and S. T. Pinho, “Generation of random distribution of fibres in long-fibre reinforced composites,” Composites Science and Technology, 68, No. 9, 2092-2102 (2008).CrossRef
25.
Zurück zum Zitat Z. Hashin, “Analysis of composite materials — a survey,” Journal of Applied Mechanics, 451-505 (1983). Z. Hashin, “Analysis of composite materials — a survey,” Journal of Applied Mechanics, 451-505 (1983).
26.
Zurück zum Zitat J. C. Halpin and J. L. Kardos, “The Halpin–Tsai equations: a review,” Polymer Engineering & Science, 16, No. 5, 344-352 (1976). J. C. Halpin and J. L. Kardos, “The Halpin–Tsai equations: a review,” Polymer Engineering & Science, 16, No. 5, 344-352 (1976).
27.
Zurück zum Zitat C. L. I. Tucker and E. Liang, “Stiffness predictions for unidirectional short-fiber composites: Review and evaluation,” Composites Science and Technology, 59, No. 5, 655-671 (1999).CrossRef C. L. I. Tucker and E. Liang, “Stiffness predictions for unidirectional short-fiber composites: Review and evaluation,” Composites Science and Technology, 59, No. 5, 655-671 (1999).CrossRef
28.
Zurück zum Zitat C. C. Chamis, “Mechanics of composite materials: past, present, and future,” J. Compos. Technol. and Research, 11, No. 1, 3-14 (1989).CrossRef C. C. Chamis, “Mechanics of composite materials: past, present, and future,” J. Compos. Technol. and Research, 11, No. 1, 3-14 (1989).CrossRef
29.
Zurück zum Zitat T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall., 21, No. 5, 571-571 (1973).CrossRef T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metall., 21, No. 5, 571-571 (1973).CrossRef
30.
Zurück zum Zitat A. Jain, “Micro and mesomechanics of fibre reinforced composites using mean field homogenization formulations: A review,” Materials Today Communications, 21, No. 1, 100552 (2019). A. Jain, “Micro and mesomechanics of fibre reinforced composites using mean field homogenization formulations: A review,” Materials Today Communications, 21, No. 1, 100552 (2019).
31.
Zurück zum Zitat S. Koley, P. M. Mohite, and C. S. Upadhyay, “A micromechanical study and uncertainty quantification for effective properties of unidirectional fibre reinforced composites,” Composite Structures, 225, 111141(2019).CrossRef S. Koley, P. M. Mohite, and C. S. Upadhyay, “A micromechanical study and uncertainty quantification for effective properties of unidirectional fibre reinforced composites,” Composite Structures, 225, 111141(2019).CrossRef
32.
Zurück zum Zitat B. Sabuncuoglu et al., “Micro-scale finite element analysis of stress concentrations in steel fiber composites under transverse loading,” Journal of Composite Materials, 49, No. 9, 1057-1069 (2015).CrossRef B. Sabuncuoglu et al., “Micro-scale finite element analysis of stress concentrations in steel fiber composites under transverse loading,” Journal of Composite Materials, 49, No. 9, 1057-1069 (2015).CrossRef
33.
Zurück zum Zitat B. Sabuncuoglu, O. Cakmakci, and F. S. Kadioglu, “Fiber/matrix interface stress analysis of flax-fiber composites under transverse loading considering material nonlinearity,” Journal of Reinforced Plastics and Composites, 39, Nos. 9-10, 345-360 (2020).CrossRef B. Sabuncuoglu, O. Cakmakci, and F. S. Kadioglu, “Fiber/matrix interface stress analysis of flax-fiber composites under transverse loading considering material nonlinearity,” Journal of Reinforced Plastics and Composites, 39, Nos. 9-10, 345-360 (2020).CrossRef
34.
Zurück zum Zitat H. Miyagawa et al., “Transverse elastic modulus of carbon fibers measured by Raman spectroscopy,” Materials Science and Engineering, 412, No. 1, 88-92 (2005).CrossRef H. Miyagawa et al., “Transverse elastic modulus of carbon fibers measured by Raman spectroscopy,” Materials Science and Engineering, 412, No. 1, 88-92 (2005).CrossRef
36.
Zurück zum Zitat D. P. Mitchell, “Spectrally optimal sampling for distribution ray tracing,” Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, 157-164 (1991). D. P. Mitchell, “Spectrally optimal sampling for distribution ray tracing,” Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, 157-164 (1991).
37.
Zurück zum Zitat T. Kanit et al., “Determination of the size of the representative volume element for random composites: statistical and numerical approach,” International Journal of Solids and Structures, 40, Nos. 13-14, 3647-3679 (2003).CrossRef T. Kanit et al., “Determination of the size of the representative volume element for random composites: statistical and numerical approach,” International Journal of Solids and Structures, 40, Nos. 13-14, 3647-3679 (2003).CrossRef
38.
Zurück zum Zitat A. Jain et al., “Pseudo-grain discretization and full Mori Tanaka formulation for random heterogeneous media: Predictive abilities for stresses in individual inclusions and the matrix,” Composites Science and Technology, 87, 86-93 (2013).CrossRef A. Jain et al., “Pseudo-grain discretization and full Mori Tanaka formulation for random heterogeneous media: Predictive abilities for stresses in individual inclusions and the matrix,” Composites Science and Technology, 87, 86-93 (2013).CrossRef
Metadaten
Titel
The Effect of Packing Type on the Equivalent Modulus and Stress Concentrations of Unidirectional Composites
verfasst von
J. Simon
A. Jain
Publikationsdatum
14.01.2023
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 6/2023
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10076-z

Weitere Artikel der Ausgabe 6/2023

Mechanics of Composite Materials 6/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.