Skip to main content
Erschienen in: Mechanics of Composite Materials 6/2023

12.01.2023

Influence of the Method of Obtaining Filled Polymer Nanocomposites of Polylactide Reduced Graphene Oxide on Their Properties and Structure

verfasst von: S. Z. Rogovina, M. M. Gasymov, S. M. Lomakin, O. P Kuznetsova, I. M. Ermolaev, V. G. Shevchenko, A. V. Shapagin, A. A. Arbuzov, A. A. Berlin

Erschienen in: Mechanics of Composite Materials | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Filled compositions of polylactide (PLA) with a reduced graphene oxide (RGO) at various components ratios were obtained by two independent methods: the solid-phase mixing of components under the action of shear strains and the liquid-phase synthesis in a chloroform solution with ultrasonic stirring. The influence of the structure of formed composites on the complex of their properties was studied. The method of scanning electron microscopy showed the formation of aggregates of RGO nanoparticles during the synthesis of compositions in the liquid phase, leading to a decrease in their strength and electrical characteristics. A comparative study of the thermophysical characteristics of polylactide in the compositions obtained by the solid- and liquid-phase methods was carried out, the corresponding temperatures and heats of thermal transitions were determined, and the crystallinity of the compositions was calculated. The sharp drop observed in the crystallinity of PLA in the compositions synthesized in the solid phase was caused by amorphization of the polymer under the action of shear strains and by a decrease in the segmental mobility of macromolecules under these conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. J. Jem, J. F. van der Pol, and S. de Vos Microbial Lactic Acid, Its Polymer Poly(lactic acid) and their industrial Applications, Plastics from Bacteria: Natural Functions and Applications / Ed. G. G.-Q. Chen — Berlin, Heidelberg: Springer, 323-346 (2010). K. J. Jem, J. F. van der Pol, and S. de Vos Microbial Lactic Acid, Its Polymer Poly(lactic acid) and their industrial Applications, Plastics from Bacteria: Natural Functions and Applications / Ed. G. G.-Q. Chen — Berlin, Heidelberg: Springer, 323-346 (2010).
2.
Zurück zum Zitat D. A. Garlotta, “Literature review of poly(lactic acid),” J. Polym. Environ., 19, No. 2, 63-84 (2011).CrossRef D. A. Garlotta, “Literature review of poly(lactic acid),” J. Polym. Environ., 19, No. 2, 63-84 (2011).CrossRef
3.
Zurück zum Zitat T. Ghaffar, M. Irshad, Z. Anwar, T. Aqil, Z. Zulifqar, A. Tarig, M. Kamran, N. Ehsan, and S. Mehmood Recent trends in lactic acid biotechnology: A brief review on production to purification,” J. Radiat. Res. Appl. Sci., 7, No. 2, 222-229 (2014).CrossRef T. Ghaffar, M. Irshad, Z. Anwar, T. Aqil, Z. Zulifqar, A. Tarig, M. Kamran, N. Ehsan, and S. Mehmood Recent trends in lactic acid biotechnology: A brief review on production to purification,” J. Radiat. Res. Appl. Sci., 7, No. 2, 222-229 (2014).CrossRef
4.
Zurück zum Zitat R. Mehta, V. Kumar, H. Bhunia, and S. N. Upadhyay, “Synthesis of poly(lactic acid): A Review,” J. Macromol. Sci., Polym. Rev., 45, No. 4, 325-349 (2005).CrossRef R. Mehta, V. Kumar, H. Bhunia, and S. N. Upadhyay, “Synthesis of poly(lactic acid): A Review,” J. Macromol. Sci., Polym. Rev., 45, No. 4, 325-349 (2005).CrossRef
5.
Zurück zum Zitat R. E. Drumright, P. R. Gruber, and D. E. Henton, “Polylactic acid technology,” Adv. Mater., 12, No. 23, 1841-1846 (2000).CrossRef R. E. Drumright, P. R. Gruber, and D. E. Henton, “Polylactic acid technology,” Adv. Mater., 12, No. 23, 1841-1846 (2000).CrossRef
6.
Zurück zum Zitat W. Gao, The Chemistry of Grapheme Oxide, Graphene Oxide. Cham: Springer Int. Publ., 61-95 (2015). W. Gao, The Chemistry of Grapheme Oxide, Graphene Oxide. Cham: Springer Int. Publ., 61-95 (2015).
7.
Zurück zum Zitat Y. Fu, L. Liu, J. Zhang, and W. C. Hiscox, “Functionalized graphenes with polymer toughener as novel interface modifier for property-tailored polylactic acid/graphene nanocomposites,” Polym., 55, No. 24, 6381-6389 (2014).CrossRef Y. Fu, L. Liu, J. Zhang, and W. C. Hiscox, “Functionalized graphenes with polymer toughener as novel interface modifier for property-tailored polylactic acid/graphene nanocomposites,” Polym., 55, No. 24, 6381-6389 (2014).CrossRef
8.
Zurück zum Zitat S. Rogovina, S. Lomakin, S. Usachev, and M. Gasymov, O. Kuznetsova, N. Shilkina, V. Shevchenko, A. Shapagin, E. Prut, and A.Berlin, “The study of properties and structure of polylactide-graphite nanoplates compositions,” Hindawi Polym. Crystal., Article ID 4367582, 9 p. (2022). S. Rogovina, S. Lomakin, S. Usachev, and M. Gasymov, O. Kuznetsova, N. Shilkina, V. Shevchenko, A. Shapagin, E. Prut, and A.Berlin, “The study of properties and structure of polylactide-graphite nanoplates compositions,” Hindawi Polym. Crystal., Article ID 4367582, 9 p. (2022).
9.
Zurück zum Zitat B. Mortazavi, F. Hassouna, A. Laachachi, A. Rajabpour, S. Ahzi, D. Chapron, V. Toniazzo, and D. Ruch, “Experimental and multiscale modeling of thermal conductivity and elastic properties of PLA/expanded graphite polymer nanocomposites,” Thermochim. Acta, 552, 106-113 (2013).CrossRef B. Mortazavi, F. Hassouna, A. Laachachi, A. Rajabpour, S. Ahzi, D. Chapron, V. Toniazzo, and D. Ruch, “Experimental and multiscale modeling of thermal conductivity and elastic properties of PLA/expanded graphite polymer nanocomposites,” Thermochim. Acta, 552, 106-113 (2013).CrossRef
10.
Zurück zum Zitat Y. Gao, O.T. Picot, E. Bilotti, and T. Peijs, “Influence of filler size on the properties of poly(lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites,” Europ. Polym. J., 86, 117-131 (2017).CrossRef Y. Gao, O.T. Picot, E. Bilotti, and T. Peijs, “Influence of filler size on the properties of poly(lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites,” Europ. Polym. J., 86, 117-131 (2017).CrossRef
11.
Zurück zum Zitat Y.-H. Lai, Y.-H. Chen, A. Pal, S.-H. Chou, S.-J. Chang, E.-W. Huan, Z.-H. Lin, and S.-Y. Chen, “Regulation of cell differentiation via synergistic self-powered stimulation and degradation behavior of a biodegradable composite piezoelectric scaffold for cartilage tissue,” Nano Energy. Part A, 90, 106545 (2021).CrossRef Y.-H. Lai, Y.-H. Chen, A. Pal, S.-H. Chou, S.-J. Chang, E.-W. Huan, Z.-H. Lin, and S.-Y. Chen, “Regulation of cell differentiation via synergistic self-powered stimulation and degradation behavior of a biodegradable composite piezoelectric scaffold for cartilage tissue,” Nano Energy. Part A, 90, 106545 (2021).CrossRef
12.
Zurück zum Zitat D. Esperanza, I. Naroa, R. Sylvie, and L.-M. Senentxu, “Cytocompatible scaffolds of poly(L-lactide)/reduced graphene oxide for tissue engineering,” J. Biomat. Sci. Polym., 32, No. 11, 1406-1419 (2021).CrossRef D. Esperanza, I. Naroa, R. Sylvie, and L.-M. Senentxu, “Cytocompatible scaffolds of poly(L-lactide)/reduced graphene oxide for tissue engineering,” J. Biomat. Sci. Polym., 32, No. 11, 1406-1419 (2021).CrossRef
13.
Zurück zum Zitat S. V. Usachev, S. M. Lomakin, E. V. Koverzanova, N. G. Shilkina, I. I. Levina, E. V. Prut, S. Z. Rogovina, and A. A. Berlin, “Thermal degradation of various types of polylactides research. The effect of reduced graphite oxide on the composition of the PLA4042D,” Thermochim. Acta, 712, 179227 (2022).CrossRef S. V. Usachev, S. M. Lomakin, E. V. Koverzanova, N. G. Shilkina, I. I. Levina, E. V. Prut, S. Z. Rogovina, and A. A. Berlin, “Thermal degradation of various types of polylactides research. The effect of reduced graphite oxide on the composition of the PLA4042D,” Thermochim. Acta, 712, 179227 (2022).CrossRef
14.
Zurück zum Zitat M. Moniruzzaman and K. I. Winey, “Polymer nanocomposites containing carbon nanotubes,” Macromolecules, 39, 5194-5205 (2006).CrossRef M. Moniruzzaman and K. I. Winey, “Polymer nanocomposites containing carbon nanotubes,” Macromolecules, 39, 5194-5205 (2006).CrossRef
15.
Zurück zum Zitat H. B. Zhang, W. G. Zheng, Q. Yan, J. W. Wang, Z. H. Lu et al., “Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding,” Polymers, 51, 1191-1196 (2010).CrossRef H. B. Zhang, W. G. Zheng, Q. Yan, J. W. Wang, Z. H. Lu et al., “Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding,” Polymers, 51, 1191-1196 (2010).CrossRef
16.
Zurück zum Zitat S. Z. Rogovina, K. V. Aleksanyan, A. A. Loginova, N. E. Ivanushkina, L. V. Vladimirov, E. V. Prut, and A. A. Berlin, “Influence of PEG on mechanical properties and biodegradation of composites based on PLA and starch,” Starch/Staerke., 70, (2018).https://doi.org/10.002/star.201700268 S. Z. Rogovina, K. V. Aleksanyan, A. A. Loginova, N. E. Ivanushkina, L. V. Vladimirov, E. V. Prut, and A. A. Berlin, “Influence of PEG on mechanical properties and biodegradation of composites based on PLA and starch,” Starch/Staerke., 70, (2018).https://​doi.​org/​10.​002/​star.​201700268
17.
Zurück zum Zitat S. Z. Rogovina, E. V. Prut, K. V. Aleksanyan, V. G. Krashininnikov, E. O. Perepelitsyna, D. P. Shaskin, N. E. Ivanushkina, and A. A. Berlin, “Production and investigation of structure and properties of polyethуlene-polylactide composites,” J. Appl. Polym. Sci., 136, No. 22, 47598. (2019); https:// doi.org/https://doi.org/10.1002/app.47598 S. Z. Rogovina, E. V. Prut, K. V. Aleksanyan, V. G. Krashininnikov, E. O. Perepelitsyna, D. P. Shaskin, N. E. Ivanushkina, and A. A. Berlin, “Production and investigation of structure and properties of polyethуlene-polylactide composites,” J. Appl. Polym. Sci., 136, No. 22, 47598. (2019); https:// doi.org/https://​doi.​org/​10.​1002/​app.​47598
18.
Zurück zum Zitat S. Z. Rogovina, L. A. Zhorina, A. K. Gatin, E. V. Prut, O. P. Kuznetsova, A. R. Yakhina, A. A. Olkhov, N. A. Samoylov, M. V. Grishin, A. L. Iordanskii, and A. A. Berlin, “Biodegradable polylactide-poly(3-hydroxybutyrate) compositions obtained via blending under shear deformations and electrospinning: characterization and environmental application,” Polymers, 12, 1088 (2020); doi:https://doi.org/10.3390/polym12051088CrossRef S. Z. Rogovina, L. A. Zhorina, A. K. Gatin, E. V. Prut, O. P. Kuznetsova, A. R. Yakhina, A. A. Olkhov, N. A. Samoylov, M. V. Grishin, A. L. Iordanskii, and A. A. Berlin, “Biodegradable polylactide-poly(3-hydroxybutyrate) compositions obtained via blending under shear deformations and electrospinning: characterization and environmental application,” Polymers, 12, 1088 (2020); doi:https://​doi.​org/​10.​3390/​polym12051088CrossRef
19.
Zurück zum Zitat A. A. Arbuzov, V. E. Muradyan, B. P. Tarasov, E. A. Sokolov, and S. D. Babenko, “Epoxy composites with thermally reduced graphite oxide and their properties,” Zh. Physical Chemistry, 90, No. 5, 663-667 (2016). A. A. Arbuzov, V. E. Muradyan, B. P. Tarasov, E. A. Sokolov, and S. D. Babenko, “Epoxy composites with thermally reduced graphite oxide and their properties,” Zh. Physical Chemistry, 90, No. 5, 663-667 (2016).
20.
Zurück zum Zitat A. A. Arbuzov, V. E. Muradyan, and B. P. Tarasov, “Synthesis of graphene-like materials by reduction of graphite oxide,” Izv. RAS Ser. Chem., No. 9, 1962-1966 (2013). A. A. Arbuzov, V. E. Muradyan, and B. P. Tarasov, “Synthesis of graphene-like materials by reduction of graphite oxide,” Izv. RAS Ser. Chem., No. 9, 1962-1966 (2013).
21.
Zurück zum Zitat M. Alexandre and P. Dubois, “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials,” Mater. sci. Eng. R. Rep., 28, 1-63 (2000).CrossRef M. Alexandre and P. Dubois, “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials,” Mater. sci. Eng. R. Rep., 28, 1-63 (2000).CrossRef
22.
Zurück zum Zitat T. D. Fornes and D. R. Paul, “Modeling properties on nylon 6/clay nano-composites using composite theories,” Polym., 44, 4993-5013 (2003).CrossRef T. D. Fornes and D. R. Paul, “Modeling properties on nylon 6/clay nano-composites using composite theories,” Polym., 44, 4993-5013 (2003).CrossRef
23.
Zurück zum Zitat L. Gong, I. A. Kinloch, R. J. Young, I. Riaz, R. Jalil, and K. S. Novoselov, “Interfacial stress transfer in a graphene monolayer nanocomposite,” Adv. Mater., 22, 2694-2697 (2010).CrossRef L. Gong, I. A. Kinloch, R. J. Young, I. Riaz, R. Jalil, and K. S. Novoselov, “Interfacial stress transfer in a graphene monolayer nanocomposite,” Adv. Mater., 22, 2694-2697 (2010).CrossRef
24.
Zurück zum Zitat D. W. Schaefer and R. S. Justice, “How nano are nanocomposites,” Macromol., 40, 8501-8517 (2007).CrossRef D. W. Schaefer and R. S. Justice, “How nano are nanocomposites,” Macromol., 40, 8501-8517 (2007).CrossRef
25.
Zurück zum Zitat D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide, Chem. Soc. Rev., 39, 228-240 (2010). D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide, Chem. Soc. Rev., 39, 228-240 (2010).
26.
Zurück zum Zitat H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, et al., “Functionalized single graphene sheets derived from splitting graphite oxide,” J. Phys. Chem. B, 110, No. 17, 8535-8539 (2006).CrossRef H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, et al., “Functionalized single graphene sheets derived from splitting graphite oxide,” J. Phys. Chem. B, 110, No. 17, 8535-8539 (2006).CrossRef
27.
Zurück zum Zitat S. Z. Rogovina, Chemical modification of natural polysaccharides of cellulose, chitin and chitosan in the solid phase under the action of shear deformations, Dis. ... Dr. chem. Sciences. ISPM RAS. - M., 232 p. (2003). S. Z. Rogovina, Chemical modification of natural polysaccharides of cellulose, chitin and chitosan in the solid phase under the action of shear deformations, Dis. ... Dr. chem. Sciences. ISPM RAS. - M., 232 p. (2003).
28.
Zurück zum Zitat T. Batakliev, V. Georgiev, C. Kalupgian, P. A. R. Musoz, H. Ribeiro, G. J. M. Fechine, R. J. E. Andrade, E. Ivanov, and R. Kotsilkova, “Physico-chemical characterization of PLA-based composites holding carbon nanofillers,” Appl. Compos. Mat., 28, 1175-1192 (2021).CrossRef T. Batakliev, V. Georgiev, C. Kalupgian, P. A. R. Musoz, H. Ribeiro, G. J. M. Fechine, R. J. E. Andrade, E. Ivanov, and R. Kotsilkova, “Physico-chemical characterization of PLA-based composites holding carbon nanofillers,” Appl. Compos. Mat., 28, 1175-1192 (2021).CrossRef
29.
Zurück zum Zitat V. Goodarzi, M. Fasihib, H. Garmabi, M. Ohshima., K. Taki, and M. R. Saeb, “Microstructure, mechanical and electrical characterizations of bimodal and nanocellular polypropylene/graphene nanoplatelet composite foams,” Mater. Today Comm., 25, 101447 (2020).CrossRef V. Goodarzi, M. Fasihib, H. Garmabi, M. Ohshima., K. Taki, and M. R. Saeb, “Microstructure, mechanical and electrical characterizations of bimodal and nanocellular polypropylene/graphene nanoplatelet composite foams,” Mater. Today Comm., 25, 101447 (2020).CrossRef
30.
Zurück zum Zitat Y. A. Balogun and R. C. Buchanan, “Enhanced percolative properties from solubility dispersion of filler phase in conducting polymer composites (CPCs),” Compos. Sci. Technol., 892-900 (2010). Y. A. Balogun and R. C. Buchanan, “Enhanced percolative properties from solubility dispersion of filler phase in conducting polymer composites (CPCs),” Compos. Sci. Technol., 892-900 (2010).
31.
Zurück zum Zitat E. Fischer, H. Sterzel, and G. Wegner, “Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions,” Colloid Polym. Sci., 521, 980-990 (1973). E. Fischer, H. Sterzel, and G. Wegner, “Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions,” Colloid Polym. Sci., 521, 980-990 (1973).
Metadaten
Titel
Influence of the Method of Obtaining Filled Polymer Nanocomposites of Polylactide Reduced Graphene Oxide on Their Properties and Structure
verfasst von
S. Z. Rogovina
M. M. Gasymov
S. M. Lomakin
O. P Kuznetsova
I. M. Ermolaev
V. G. Shevchenko
A. V. Shapagin
A. A. Arbuzov
A. A. Berlin
Publikationsdatum
12.01.2023
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 6/2023
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-023-10073-2

Weitere Artikel der Ausgabe 6/2023

Mechanics of Composite Materials 6/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.