Skip to main content
Erschienen in: Polymer Bulletin 11/2023

09.12.2022 | Original Paper

Preparation and properties of homogeneous oxidized sodium alginate/silica/polyacrylamide–gelatin composite hydrogel based on interpenetrating network technology

verfasst von: Dongze Li, Yuqing Liao, Xiuqiong Chen, Hongcai Wang, Yanshi Wen, Kaiyue Cheng, Weiwei Chen, Huiqiong Yan, Qiang Lin

Erschienen in: Polymer Bulletin | Ausgabe 11/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To address the functional defect of alginate hydrogel in tissue engineering applications, we adopted the interpenetrating polymer network technology as well as the incorporation of SiO2 nanoparticles and the surface coverage of gelatin to fabricate homogeneous oxidized sodium alginate/silica/polyacrylamide–gelatin (OSA/SiO2/PAM-GT) composite hydrogels, using hydroxyapatite/D-glucono-δ-lactone (HAP/GDL) complex as the gelling system. Specially, the effect of SiO2 nanoparticles on the microstructure, mechanical properties, in vitro swelling, biodegradability, biomineralization and biocompatibility of the composite hydrogels was investigated. The resultant OSA/SiO2/PAM-GT composite hydrogels exhibited relatively regular 3D morphology with well-developed pore structure with HAP/GDL as the cross-linking agents. The incorporation of SiO2 nanoparticles could effectively regulate the pore structure, mechanical properties, swelling ratio, in vitro biodegradability and biomineralization of OSA/SiO2/PAM-GT composite hydrogels. Meanwhile, the OSA/SiO2/PAM-GT composite hydrogels could also support the adhesion, proliferation and differentiation of MG-63 cells, which could be applied to the tissue engineering field.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Khan F, Ahmad SR (2013) Polysaccharides and their derivatives for versatile tissue engineering application. Macromol Biosci 13(4):395–421PubMed Khan F, Ahmad SR (2013) Polysaccharides and their derivatives for versatile tissue engineering application. Macromol Biosci 13(4):395–421PubMed
2.
Zurück zum Zitat Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281PubMed Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281PubMed
3.
Zurück zum Zitat Yan HQ, Chen XQ, Li JC, Feng YH, Shi ZF, Wang XH, Lin Q (2016) Synthesis of alginate derivative via the Ugi reaction and itscharacterization. Carbohydr Polym 136:757–763PubMed Yan HQ, Chen XQ, Li JC, Feng YH, Shi ZF, Wang XH, Lin Q (2016) Synthesis of alginate derivative via the Ugi reaction and itscharacterization. Carbohydr Polym 136:757–763PubMed
4.
Zurück zum Zitat Bidarra SJ, Barrias CC, Granja PL (2014) Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 10:1646–1662PubMed Bidarra SJ, Barrias CC, Granja PL (2014) Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater 10:1646–1662PubMed
5.
Zurück zum Zitat Farokhi M, Shariatzadeh FJ, Solouk A, Mirzadeh H (2020) Alginate based scaffolds for cartilage tissue engineering: a review. Int J Polym Mater 69:230–247 Farokhi M, Shariatzadeh FJ, Solouk A, Mirzadeh H (2020) Alginate based scaffolds for cartilage tissue engineering: a review. Int J Polym Mater 69:230–247
6.
Zurück zum Zitat Zheng A, Cao L, Liu Y, Wu J, Zeng D, Hu L, Zhang X, Jiang X (2018) Biocompatible silk/calcium silicate/sodium alginate composite scaffolds for bone tissue engineering. Carbohydr Polym 199:244–255PubMed Zheng A, Cao L, Liu Y, Wu J, Zeng D, Hu L, Zhang X, Jiang X (2018) Biocompatible silk/calcium silicate/sodium alginate composite scaffolds for bone tissue engineering. Carbohydr Polym 199:244–255PubMed
7.
Zurück zum Zitat Wu S, Liu X, Yeung KWK, Liu C, Yang X (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R 80:1–36 Wu S, Liu X, Yeung KWK, Liu C, Yang X (2014) Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R 80:1–36
8.
Zurück zum Zitat Turco G, Marsich E, Bellomo F, Semeraro S, Donati I, Brun F, Grandolfo M, Accardo A, Paoletti S (2009) Alginate/hydroxyapatite biocomposite for bone ingrowth: a trabecular structure with high and isotropic connectivity. Biomacromol 10(6):1575–1583 Turco G, Marsich E, Bellomo F, Semeraro S, Donati I, Brun F, Grandolfo M, Accardo A, Paoletti S (2009) Alginate/hydroxyapatite biocomposite for bone ingrowth: a trabecular structure with high and isotropic connectivity. Biomacromol 10(6):1575–1583
9.
Zurück zum Zitat Ionita M, Pandele MA, Iovu H (2013) Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties. Carbohydr Polym 94:339–344PubMed Ionita M, Pandele MA, Iovu H (2013) Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties. Carbohydr Polym 94:339–344PubMed
10.
Zurück zum Zitat Hernández-González AC, Téllez-Jurado L, Rodríguez-Lorenzo LM (2020) Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: a review. Carbohydr Polym 229:115514PubMed Hernández-González AC, Téllez-Jurado L, Rodríguez-Lorenzo LM (2020) Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: a review. Carbohydr Polym 229:115514PubMed
11.
Zurück zum Zitat Li Q, Liu CG, Huang ZH, Xue FF (2011) Preparation and characterization of nanoparticles based on hydrophobic alginate derivative as carriers for sustained release of vitamin D3. J Agric Food Chem 59:1962–1967PubMed Li Q, Liu CG, Huang ZH, Xue FF (2011) Preparation and characterization of nanoparticles based on hydrophobic alginate derivative as carriers for sustained release of vitamin D3. J Agric Food Chem 59:1962–1967PubMed
12.
Zurück zum Zitat Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598PubMed Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598PubMed
13.
Zurück zum Zitat Alizadeh N, Celestine AN, Auad ML, Agrawal V (2021) Mechanical characterization and modeling stress relaxation behavior of acrylic–polyurethane-based graft-interpenetrating polymer networks. Polym Eng Sci 61:1299–1309 Alizadeh N, Celestine AN, Auad ML, Agrawal V (2021) Mechanical characterization and modeling stress relaxation behavior of acrylic–polyurethane-based graft-interpenetrating polymer networks. Polym Eng Sci 61:1299–1309
14.
Zurück zum Zitat Naseri N, Deepa B, Mathew AP, Oksman K, Girandon L (2016) Nanocellulose-based interpenetrating polymer network (IPN) hydrogels for cartilage applications. Biomacromol 17:3714–3723 Naseri N, Deepa B, Mathew AP, Oksman K, Girandon L (2016) Nanocellulose-based interpenetrating polymer network (IPN) hydrogels for cartilage applications. Biomacromol 17:3714–3723
15.
Zurück zum Zitat Darnell M, Sun J, Mehta M, Johnson C, Arany P, Suo Z, Mooney D (2013) Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 34:8042–8048PubMedPubMedCentral Darnell M, Sun J, Mehta M, Johnson C, Arany P, Suo Z, Mooney D (2013) Performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 34:8042–8048PubMedPubMedCentral
16.
Zurück zum Zitat Sun J, Zhao X, Illeperuma W, Chaudhuri O, Oh KH, Mooney D, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489:133–136PubMedPubMedCentral Sun J, Zhao X, Illeperuma W, Chaudhuri O, Oh KH, Mooney D, Vlassak JJ, Suo Z (2012) Highly stretchable and tough hydrogels. Nature 489:133–136PubMedPubMedCentral
17.
Zurück zum Zitat Fitzgerald MM, Bootsma K, Berberich JA, Sparks JL (2015) Tunable stress relaxation behavior of an alginate-polyacrylamide hydrogel: comparison with muscle tissue. Biomacromol 16:1497–1505 Fitzgerald MM, Bootsma K, Berberich JA, Sparks JL (2015) Tunable stress relaxation behavior of an alginate-polyacrylamide hydrogel: comparison with muscle tissue. Biomacromol 16:1497–1505
18.
Zurück zum Zitat Chen Y, Zhou Y, Liu W, Pi H, Zeng G (2019) POSS hybrid robust biomass IPN hydrogels with temperature responsiveness. Polymers 11(3):524PubMedPubMedCentral Chen Y, Zhou Y, Liu W, Pi H, Zeng G (2019) POSS hybrid robust biomass IPN hydrogels with temperature responsiveness. Polymers 11(3):524PubMedPubMedCentral
19.
Zurück zum Zitat Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) ChemInform abstract: mesoporous silica nanoparticles in biomedical applications. ChemSoc Rev 41(7):2590–2605 Li Z, Barnes JC, Bosoy A, Stoddart JF, Zink JI (2012) ChemInform abstract: mesoporous silica nanoparticles in biomedical applications. ChemSoc Rev 41(7):2590–2605
20.
Zurück zum Zitat Gribova V, Auzely-Velty R, Picart C (2012) Polyelectrolyte multilayer assemblies on materials surfaces: from cell adhesion to tissue engineering. Chem Mater 24:854–869PubMedPubMedCentral Gribova V, Auzely-Velty R, Picart C (2012) Polyelectrolyte multilayer assemblies on materials surfaces: from cell adhesion to tissue engineering. Chem Mater 24:854–869PubMedPubMedCentral
21.
Zurück zum Zitat Lee H, Hwang H, Kim Y, Jeon H, Kim GH (2014) Physical and bioactive properties of multi-layered PCL/silica composite scaffolds for bone tissue regeneration. Chem Eng J 250:399–408 Lee H, Hwang H, Kim Y, Jeon H, Kim GH (2014) Physical and bioactive properties of multi-layered PCL/silica composite scaffolds for bone tissue regeneration. Chem Eng J 250:399–408
22.
Zurück zum Zitat Ha SW, Viggeswarapu M, Habib MM, BeckJr GR (2018) Bioactive effects of silica nanoparticles on bone cells are size, surface, and composition dependent. Acta Biomater 82:184–196PubMedPubMedCentral Ha SW, Viggeswarapu M, Habib MM, BeckJr GR (2018) Bioactive effects of silica nanoparticles on bone cells are size, surface, and composition dependent. Acta Biomater 82:184–196PubMedPubMedCentral
23.
Zurück zum Zitat Beck GR, Ha SW, Camalier CE, Yamaguchi M, Li Y, Lee JK, Weitzmann MN (2012) Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomed-Nanotechnol 8(6):793–803 Beck GR, Ha SW, Camalier CE, Yamaguchi M, Li Y, Lee JK, Weitzmann MN (2012) Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomed-Nanotechnol 8(6):793–803
24.
Zurück zum Zitat Weitzmann MN, Ha SW, Vikulina T, Roser-Pages S, Lee JK, Beck GR (2015) Bioactive silica nanoparticles reverse age-associated bone loss in mice. Nanomed-Nanotechnol 11(4):959–967 Weitzmann MN, Ha SW, Vikulina T, Roser-Pages S, Lee JK, Beck GR (2015) Bioactive silica nanoparticles reverse age-associated bone loss in mice. Nanomed-Nanotechnol 11(4):959–967
25.
Zurück zum Zitat Pattanashetti NA, Viana T, Alves N, Mitchell GR (2020) Development of novel 3D scaffolds using BioExtruder by varying the content of hydroxyapatite and silica in PCL matrix for bone tissue engineering. J Polym Res 27(4):1–13 Pattanashetti NA, Viana T, Alves N, Mitchell GR (2020) Development of novel 3D scaffolds using BioExtruder by varying the content of hydroxyapatite and silica in PCL matrix for bone tissue engineering. J Polym Res 27(4):1–13
26.
Zurück zum Zitat Lu L, Zhang P, Cao Y, Lin Q, Pang SJ (2009) Study on partially oxidized sodium alginate with potassium permanganate as the oxidant. J Appl Polym Sci 113(6):3585–3589 Lu L, Zhang P, Cao Y, Lin Q, Pang SJ (2009) Study on partially oxidized sodium alginate with potassium permanganate as the oxidant. J Appl Polym Sci 113(6):3585–3589
27.
Zurück zum Zitat Mao S, Zhang T, Sun W, Ren X (2012) The depolymerization of sodium alginate by oxidative degradation. Pharm Dev Technol 17(6):763–769PubMed Mao S, Zhang T, Sun W, Ren X (2012) The depolymerization of sodium alginate by oxidative degradation. Pharm Dev Technol 17(6):763–769PubMed
28.
Zurück zum Zitat Yue W, Zhang HH, Yang ZN, Xie Y (2021) Preparation of low-molecular-weight sodium alginate by ozonation. Carbohydr Polym 251:117104PubMed Yue W, Zhang HH, Yang ZN, Xie Y (2021) Preparation of low-molecular-weight sodium alginate by ozonation. Carbohydr Polym 251:117104PubMed
29.
Zurück zum Zitat Falkeborg M, Cheong LZ, Gianfico C, Sztukiel KM, Kristensen K, Glasius M, Xu X, Guo Z (2014) Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation. Food Chem 164:185–194PubMed Falkeborg M, Cheong LZ, Gianfico C, Sztukiel KM, Kristensen K, Glasius M, Xu X, Guo Z (2014) Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation. Food Chem 164:185–194PubMed
30.
Zurück zum Zitat Gomez CG, Rinaudo M, Villar MA (2007) Oxidation of sodium alginate and characterization of the oxidized derivatives. Carbohydr Polym 67:296–304 Gomez CG, Rinaudo M, Villar MA (2007) Oxidation of sodium alginate and characterization of the oxidized derivatives. Carbohydr Polym 67:296–304
31.
Zurück zum Zitat Tchobanian A, Oosterwyck HV, Fardim P (2019) Polysaccharides for tissue engineering: current landscape and future prospects. Carbohydr Polym 205:601–625PubMed Tchobanian A, Oosterwyck HV, Fardim P (2019) Polysaccharides for tissue engineering: current landscape and future prospects. Carbohydr Polym 205:601–625PubMed
32.
Zurück zum Zitat Su K, Wang C (2015) Recent advances in the use of gelatin in biomedical research. Biotechnol Lett 37:2139–2145PubMed Su K, Wang C (2015) Recent advances in the use of gelatin in biomedical research. Biotechnol Lett 37:2139–2145PubMed
33.
Zurück zum Zitat Gungor M, Sagirli MN, Calisir MD, Selcuk S, Kilic A (2021) Developing centrifugal spun thermally cross-linked gelatin based fibrous biomats for antibacterial wound dressing applications. Polym Eng Sci 61:2311–2322 Gungor M, Sagirli MN, Calisir MD, Selcuk S, Kilic A (2021) Developing centrifugal spun thermally cross-linked gelatin based fibrous biomats for antibacterial wound dressing applications. Polym Eng Sci 61:2311–2322
34.
Zurück zum Zitat Bernstein-Levi O, Ochbaum G, Bitton R (2016) The effect of covalently linked RGD peptide on the conformation of polysaccharides in aqueous solutions. Colloid Surf B 137:214–220 Bernstein-Levi O, Ochbaum G, Bitton R (2016) The effect of covalently linked RGD peptide on the conformation of polysaccharides in aqueous solutions. Colloid Surf B 137:214–220
35.
Zurück zum Zitat Chen X, Yan H, Bao C, Zhu Q, Liu Z, Wen Y, Li Z, Zhang T, Lin Q (2022) Fabrication and evaluation of homogeneous alginate/polyacrylamide–chitosan–gelatin composite hydrogel scaffolds based on the interpenetrating networks for tissue engineering. Polym Eng Sci 62(1):116–128 Chen X, Yan H, Bao C, Zhu Q, Liu Z, Wen Y, Li Z, Zhang T, Lin Q (2022) Fabrication and evaluation of homogeneous alginate/polyacrylamide–chitosan–gelatin composite hydrogel scaffolds based on the interpenetrating networks for tissue engineering. Polym Eng Sci 62(1):116–128
36.
Zurück zum Zitat Wang H, Chen X, Wen Y, Li D, Sun X, Liu Z, Yan H, Lin Q (2022) A study on the correlation between the oxidation degree of oxidized sodium alginate on its degradability and gelation. Polymers 14:1679PubMedPubMedCentral Wang H, Chen X, Wen Y, Li D, Sun X, Liu Z, Yan H, Lin Q (2022) A study on the correlation between the oxidation degree of oxidized sodium alginate on its degradability and gelation. Polymers 14:1679PubMedPubMedCentral
37.
Zurück zum Zitat Yang CH, Wang MX, Haider H, Yang JH, Sun JY, Chen YM, Zhou JX, Suo ZG (2013) Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl Mater Interfaces 5:10418–10422PubMed Yang CH, Wang MX, Haider H, Yang JH, Sun JY, Chen YM, Zhou JX, Suo ZG (2013) Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl Mater Interfaces 5:10418–10422PubMed
38.
Zurück zum Zitat Liu YS, Huang QL, Feng QL (2013) 3D scaffold of PLLA/pearl and PLLA/nacre powder for bone regeneration. Biomed Mater 8:065001–065009PubMed Liu YS, Huang QL, Feng QL (2013) 3D scaffold of PLLA/pearl and PLLA/nacre powder for bone regeneration. Biomed Mater 8:065001–065009PubMed
39.
Zurück zum Zitat Yan H, Chen X, Bao C, Wu S, He S, Lin Q (2020) Alginate derivative-functionalized silica nanoparticles: surface modification and characterization. Polym Bull 77:73–84 Yan H, Chen X, Bao C, Wu S, He S, Lin Q (2020) Alginate derivative-functionalized silica nanoparticles: surface modification and characterization. Polym Bull 77:73–84
40.
Zurück zum Zitat Islam MS, Karim MR (2010) Fabrication and characterization of poly (vinyl alcohol)/alginate blend nanofibers by electrospinning method. Colloid Surf A 366:135–140 Islam MS, Karim MR (2010) Fabrication and characterization of poly (vinyl alcohol)/alginate blend nanofibers by electrospinning method. Colloid Surf A 366:135–140
41.
Zurück zum Zitat Yang JS, Ren HB, Xie YJ (2011) Synthesis of amidic alginate derivatives and their application in microencapsulation of λ-cyhalothrin. Biomacromol 12:2982–2987 Yang JS, Ren HB, Xie YJ (2011) Synthesis of amidic alginate derivatives and their application in microencapsulation of λ-cyhalothrin. Biomacromol 12:2982–2987
42.
Zurück zum Zitat Yan HQ, Chen XQ, Feng MX, Shi ZF, Zhang W, Wang Y, Ke CR, Lin Q (2019) Entrapment of bacterial cellulose nanocrystals stabilized Pickering emulsions droplets in alginate beads for hydrophobic drug delivery. Colloid Surf B 177:112–120 Yan HQ, Chen XQ, Feng MX, Shi ZF, Zhang W, Wang Y, Ke CR, Lin Q (2019) Entrapment of bacterial cellulose nanocrystals stabilized Pickering emulsions droplets in alginate beads for hydrophobic drug delivery. Colloid Surf B 177:112–120
43.
Zurück zum Zitat Li Z, Chen X, Bao C, Liu C, Liu C, Li D, Yan H, Lin Q (2021) Fabrication and evaluation of alginate/bacterial cellulose nanocrystals-chitosan-gelatin composite scaffolds. Molecules 26:5003PubMedPubMedCentral Li Z, Chen X, Bao C, Liu C, Liu C, Li D, Yan H, Lin Q (2021) Fabrication and evaluation of alginate/bacterial cellulose nanocrystals-chitosan-gelatin composite scaffolds. Molecules 26:5003PubMedPubMedCentral
44.
Zurück zum Zitat Yan H, Chen X, Bao C, Yi J, Lei M, Ke C, Zhang W, Lin Q (2020) Synthesis and assessment of CTAB and NPE modified organomontmorillonite for the fabrication of organo-montmorillonite/alginate based hydrophobic pharmaceutical controlled-release formulation. Colloid Surf B 191:110983 Yan H, Chen X, Bao C, Yi J, Lei M, Ke C, Zhang W, Lin Q (2020) Synthesis and assessment of CTAB and NPE modified organomontmorillonite for the fabrication of organo-montmorillonite/alginate based hydrophobic pharmaceutical controlled-release formulation. Colloid Surf B 191:110983
45.
Zurück zum Zitat Liu M, Dai L, Shi H, Xiong S, Zhou C (2015) In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Mater Sci Eng C 49:700–712 Liu M, Dai L, Shi H, Xiong S, Zhou C (2015) In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Mater Sci Eng C 49:700–712
46.
Zurück zum Zitat Valente JFA, Valente TAM, Alves P, Ferreira P, Silva A, Correia IJ (2012) Alginate based scaffolds for bone tissue engineering. Mater Sci Eng C 32:2596–2603 Valente JFA, Valente TAM, Alves P, Ferreira P, Silva A, Correia IJ (2012) Alginate based scaffolds for bone tissue engineering. Mater Sci Eng C 32:2596–2603
47.
Zurück zum Zitat Sowjanya JA, Singh J, Mohita T, Sarvanan S, Moorthi A, Srinivasan N, Selvamurugan N (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloid Surf B 109:294–300 Sowjanya JA, Singh J, Mohita T, Sarvanan S, Moorthi A, Srinivasan N, Selvamurugan N (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloid Surf B 109:294–300
48.
Zurück zum Zitat Chen F, Tian M, Zhang D, Wang J, Wang Q, Yu X, Zhang X, Wan C (2012) Preparation and characterization of oxidized alginate covalently cross-linked galactosylated chitosan scaffold for liver tissue engineering. Mater Sci Eng C 32(2):310–320 Chen F, Tian M, Zhang D, Wang J, Wang Q, Yu X, Zhang X, Wan C (2012) Preparation and characterization of oxidized alginate covalently cross-linked galactosylated chitosan scaffold for liver tissue engineering. Mater Sci Eng C 32(2):310–320
49.
Zurück zum Zitat Shi XT, Wang YJ, Ren L, Zhao NR, Gong YH, Wang DA (2009) Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Acta Biomater 5:1697–1707PubMed Shi XT, Wang YJ, Ren L, Zhao NR, Gong YH, Wang DA (2009) Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Acta Biomater 5:1697–1707PubMed
50.
Zurück zum Zitat Lewandowska-Łańcucka J, Mystek K, Mignon A, Vlierberghe SV, Łatkiewicz A, Nowakowska M (2017) Alginate- and gelatin-based bioactive photocross-linkable hybridmaterials for bone tissue engineering. Carbohydr Polym 157:1714–1722PubMed Lewandowska-Łańcucka J, Mystek K, Mignon A, Vlierberghe SV, Łatkiewicz A, Nowakowska M (2017) Alginate- and gelatin-based bioactive photocross-linkable hybridmaterials for bone tissue engineering. Carbohydr Polym 157:1714–1722PubMed
51.
Zurück zum Zitat Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromol 15:2327–2346 Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromol 15:2327–2346
52.
Zurück zum Zitat Pattanashetti NA, Biscaia S, Moura C, Mitchell GR, Kariduraganavar MY (2019) Development of novel 3D scaffolds using BioExtruder by the incorporation of silica into polycaprolactone matrix for bone tissue engineering. Mater Today Commun 21:100651 Pattanashetti NA, Biscaia S, Moura C, Mitchell GR, Kariduraganavar MY (2019) Development of novel 3D scaffolds using BioExtruder by the incorporation of silica into polycaprolactone matrix for bone tissue engineering. Mater Today Commun 21:100651
53.
Zurück zum Zitat Yang X, Li Y, Liu X, Huang Q, He W, Zhang R, Feng Q, Benayahu D (2016) The stimulatory effect of silica nanoparticles on osteogenic differentiation of human mesenchymal stem cells. Biomed Mater 12(1):015001PubMed Yang X, Li Y, Liu X, Huang Q, He W, Zhang R, Feng Q, Benayahu D (2016) The stimulatory effect of silica nanoparticles on osteogenic differentiation of human mesenchymal stem cells. Biomed Mater 12(1):015001PubMed
54.
Zurück zum Zitat Shie MY, Ding SJ, Chang HC (2011) The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater 7(6):2604–2614PubMed Shie MY, Ding SJ, Chang HC (2011) The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater 7(6):2604–2614PubMed
55.
Zurück zum Zitat Ge C, Xiao G, Jiang D, Franceschi RT (2007) Critical role of the extracellular signal–regulated kinase–MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol 176(5):709–718PubMedPubMedCentral Ge C, Xiao G, Jiang D, Franceschi RT (2007) Critical role of the extracellular signal–regulated kinase–MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol 176(5):709–718PubMedPubMedCentral
Metadaten
Titel
Preparation and properties of homogeneous oxidized sodium alginate/silica/polyacrylamide–gelatin composite hydrogel based on interpenetrating network technology
verfasst von
Dongze Li
Yuqing Liao
Xiuqiong Chen
Hongcai Wang
Yanshi Wen
Kaiyue Cheng
Weiwei Chen
Huiqiong Yan
Qiang Lin
Publikationsdatum
09.12.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 11/2023
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-022-04631-2

Weitere Artikel der Ausgabe 11/2023

Polymer Bulletin 11/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.