Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 6/2021

21.03.2020 | Original Article

Pretreatment of lignocellulosic biomass at atmospheric conditions by using different organosolv liquors: a comparison of lignins

verfasst von: Sibel Başakçılardan Kabakcı, Medya Hatun Tanış

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In order to strengthen the bio-based economy, it is necessary to produce value-added products by processing all fractions of the biomass, especially lignin. Isolation of lignin at atmospheric pressure and lower temperature will make it possible to recover lignin and use it for different purposes. In the present study, lignins were recovered from wood sawdust by applying six different organosolv treatments at atmospheric pressure. The lignins (ethanol organosolv lignin (EOL), alkaline glycerol organosolv lignin (AGOL), acetic acid organosolv lignin (AAOL), formic acid/acetic acid/water organosolv lignin (FAWOL 1 (40/40/20, v/v/v), FAWOL 2 (50/30/20, v/v/v), FAWOL 3 (30/50/20, v/v/v)) were compared in terms of yield, thermal properties, weight-average molecular weight, and fast pyrolysis properties. The effect of isolation method on lignin yield and structure was remarkable. Organosolv treatments at atmospheric conditions resulted in precipitation yields between 6.6% (ethanol organosolv) and 42% (alkaline glycerol organosolv). The lignin precipitated with the highest yield (AGOL) actually had the highest ash content (3.9%) and the lignin precipitated with the lowest yield (EOL) had the lowest ash content (1.2%). According to FTIR analysis, all lignins exhibited peaks at similar wavelengths but with different intensities. The weight-average molecular weight of lignins ranged between 1373 g/mol (AGOL) and 7400 g/mol (FAWOL 1). The polydispersity index of lignins ranged between 7.3 (FAWOL 1) and 2.5 (EOL and AAOL), where the lignins isolated from formic acid/acetic acid/water liquors showed higher polydispersity index compared to other lignins. Pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) revealed that pyrolysis product distribution was strongly affected from the isolation method. The most abundant phenolic compound, which was observed in all lignins, was 2-methoxy-4-methylphenol (4-methylguaiacol), which was followed by 2-methoxy-4- (2-propenyl) phenol (eugenol) and guaiacol, respectively. It has been observed that each lignin is a good candidate for a different end-use due to their own characteristics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559CrossRef Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559CrossRef
4.
Zurück zum Zitat Peretti SW, Barton R and Mendonca RT (2016) Commercializing biobased products: opportunities, challenges, benefits, and risks. In: Snyder SW (ed) Lignin as feedstock for fibers and chemicals. RSC green chemistry no. 43. The Royal Society of Chemistry Peretti SW, Barton R and Mendonca RT (2016) Commercializing biobased products: opportunities, challenges, benefits, and risks. In: Snyder SW (ed) Lignin as feedstock for fibers and chemicals. RSC green chemistry no. 43. The Royal Society of Chemistry
6.
Zurück zum Zitat Henriksson G, Li J, Zhang L and Lindström ME (2010) Thermochemical conversion of biomass to liquid fuels and chemicals. In: Crocker M (ed) RSC Energy and Environment Series No. 1, Royal Society of Chemistry, London Henriksson G, Li J, Zhang L and Lindström ME (2010) Thermochemical conversion of biomass to liquid fuels and chemicals. In: Crocker M (ed) RSC Energy and Environment Series No. 1, Royal Society of Chemistry, London
12.
Zurück zum Zitat Gellerstedt G, Tomani P, Axegard P and Backlund B (2013) Integrated Forest biorefineries. In: Christopher L (ed) RSC Green Chemistry No. 18, The Royal Society of Chemistry, London Gellerstedt G, Tomani P, Axegard P and Backlund B (2013) Integrated Forest biorefineries. In: Christopher L (ed) RSC Green Chemistry No. 18, The Royal Society of Chemistry, London
15.
Zurück zum Zitat Wettstein SG, Alonso DM, Gürbüz EI, Dumesic JA (2012) A roadmap for conversion of lignocellulosic biomass to chemicals and fuels. Curr Opin Chem Eng 1:218–224CrossRef Wettstein SG, Alonso DM, Gürbüz EI, Dumesic JA (2012) A roadmap for conversion of lignocellulosic biomass to chemicals and fuels. Curr Opin Chem Eng 1:218–224CrossRef
19.
Zurück zum Zitat Kim J-Y, Choi JW (2019) Effect of molecular size of lignin on the formation of aromatic hydrocarbon during zeolite catalyzed pyrolysis. Fuel 240:92–100CrossRef Kim J-Y, Choi JW (2019) Effect of molecular size of lignin on the formation of aromatic hydrocarbon during zeolite catalyzed pyrolysis. Fuel 240:92–100CrossRef
21.
Zurück zum Zitat Gonçalves AR, Benar P (2001) Hydroxymethylation and oxidation of Organosolv lignins and utilization of the products. Bioresour Technol 79:103–111CrossRef Gonçalves AR, Benar P (2001) Hydroxymethylation and oxidation of Organosolv lignins and utilization of the products. Bioresour Technol 79:103–111CrossRef
22.
Zurück zum Zitat Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33CrossRef Zhang K, Pei Z, Wang D (2016) Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol 199:21–33CrossRef
23.
Zurück zum Zitat Cheng F, Zhao X, Hu Y (2018) Lignocellulosic biomass delignification using aqueous alcohol solutions with the catalysis of acidic ionic liquids: a comparison study of solvents. Bioresour Technol 249:969–975CrossRef Cheng F, Zhao X, Hu Y (2018) Lignocellulosic biomass delignification using aqueous alcohol solutions with the catalysis of acidic ionic liquids: a comparison study of solvents. Bioresour Technol 249:969–975CrossRef
24.
Zurück zum Zitat Shui T, Feng S, Yuan Z, Kuboki T, Xu C (2016) Highly efficient organosolv fractionation of cornstalk into cellulose and lignin in organic acids. Bioresour Technol 218:953–961CrossRef Shui T, Feng S, Yuan Z, Kuboki T, Xu C (2016) Highly efficient organosolv fractionation of cornstalk into cellulose and lignin in organic acids. Bioresour Technol 218:953–961CrossRef
26.
Zurück zum Zitat Wildschut J, Smit AT, Reith JH, Huijgen WJJ (2013) Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresour Technol 135:58–66CrossRef Wildschut J, Smit AT, Reith JH, Huijgen WJJ (2013) Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresour Technol 135:58–66CrossRef
28.
Zurück zum Zitat Geng A, Xin F, Ip J (2012) Ethanol production from horticultural waste treated by a modified organosolv method. Bioresour Technol 104:715–721CrossRef Geng A, Xin F, Ip J (2012) Ethanol production from horticultural waste treated by a modified organosolv method. Bioresour Technol 104:715–721CrossRef
29.
Zurück zum Zitat Sun F, Chen H (2008) Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw. Bioresour Technol 99:5474–5479CrossRef Sun F, Chen H (2008) Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw. Bioresour Technol 99:5474–5479CrossRef
30.
Zurück zum Zitat Moniz P, Lino J, Duarte LC, Roseiro LB, Boeriu CG, Pereira H, Carvalheiro F (2015) Fractionation of hemicelluloses and lignin from rice straw by combining autohydrolysis and optimized mild organosolv delignification. Bioresources 10(2):2626–2641CrossRef Moniz P, Lino J, Duarte LC, Roseiro LB, Boeriu CG, Pereira H, Carvalheiro F (2015) Fractionation of hemicelluloses and lignin from rice straw by combining autohydrolysis and optimized mild organosolv delignification. Bioresources 10(2):2626–2641CrossRef
32.
Zurück zum Zitat Novo LP, Gurgel LVA, Marabezi K, Curvelo AADS (2011) Delignification of sugarcane bagasse using glycerol-water mixtures to produce pulps for saccharification. Bioresour Technol 102:10040–10046CrossRef Novo LP, Gurgel LVA, Marabezi K, Curvelo AADS (2011) Delignification of sugarcane bagasse using glycerol-water mixtures to produce pulps for saccharification. Bioresour Technol 102:10040–10046CrossRef
33.
Zurück zum Zitat Xu F, Sun J-X, Sun R, Fowler P, Baird MS (2006) Comparative study of organosolv lignins from wheat straw. Ind Crop Prod 23:180–193CrossRef Xu F, Sun J-X, Sun R, Fowler P, Baird MS (2006) Comparative study of organosolv lignins from wheat straw. Ind Crop Prod 23:180–193CrossRef
34.
Zurück zum Zitat American Society for Testing and Materials (ASTM) (2013) E871–82 Standard test method for moisture analysis of particulate wood fuels American Society for Testing and Materials (ASTM) (2013) E871–82 Standard test method for moisture analysis of particulate wood fuels
35.
Zurück zum Zitat American Society for Testing and Materials (ASTM) (2015) E1755–01 Standard test method for ash in biomass American Society for Testing and Materials (ASTM) (2015) E1755–01 Standard test method for ash in biomass
36.
Zurück zum Zitat American Society for Testing and Materials (ASTM) (2016) E1690–08 Standard test method for determination of ethanol extractives in biomass American Society for Testing and Materials (ASTM) (2016) E1690–08 Standard test method for determination of ethanol extractives in biomass
37.
Zurück zum Zitat TAPPI (2006) TAPPI Test method T 222 om-02-acid insoluble lignin in wood and pulp TAPPI (2006) TAPPI Test method T 222 om-02-acid insoluble lignin in wood and pulp
43.
Zurück zum Zitat Katzen R, Frederickson RE, Brush BF (1980) Alcohol pulping appears feasible for small incremental capacity. Pulp Paper 54(8):144–149 Katzen R, Frederickson RE, Brush BF (1980) Alcohol pulping appears feasible for small incremental capacity. Pulp Paper 54(8):144–149
44.
Zurück zum Zitat Pan X, Xie D, Yu RW, Lam D, Saddler JN (2007) Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: fractionation and process optimization. Ind Eng Chem Res 46(8):2609–2617CrossRef Pan X, Xie D, Yu RW, Lam D, Saddler JN (2007) Pretreatment of lodgepole pine killed by mountain pine beetle using the ethanol organosolv process: fractionation and process optimization. Ind Eng Chem Res 46(8):2609–2617CrossRef
45.
Zurück zum Zitat Fernando EF, Vallejos EM, Area MC (2010) Lignin recovery from spent liquors from ethanol- water fractionation of sugar cane bagasse. Cellul Chem Technol 44(9):311–318 Fernando EF, Vallejos EM, Area MC (2010) Lignin recovery from spent liquors from ethanol- water fractionation of sugar cane bagasse. Cellul Chem Technol 44(9):311–318
46.
Zurück zum Zitat Rohde V, Hahn T, Wagner M, Böringer S, Tübke B, Brosse N, Dahmen N, Schmiedl D (2018) Potential of a short rotation coppice poplar as a feedstock for platform chemicals and lignin-based building blocks. Ind Crop Prod 123:698–706CrossRef Rohde V, Hahn T, Wagner M, Böringer S, Tübke B, Brosse N, Dahmen N, Schmiedl D (2018) Potential of a short rotation coppice poplar as a feedstock for platform chemicals and lignin-based building blocks. Ind Crop Prod 123:698–706CrossRef
47.
Zurück zum Zitat Panamgama LA, Peramune P.R.U.S.K (2018) Coconut coir pith lignin: a physicochemical and thermal characterization. Int J Biol Macromol 113: 1149–1157 Panamgama LA, Peramune P.R.U.S.K (2018) Coconut coir pith lignin: a physicochemical and thermal characterization. Int J Biol Macromol 113: 1149–1157
48.
Zurück zum Zitat Sun FF, Wang L, Hong J, Ren J, Du F, Hu J, Zhang Z, Zhou B (2015) The impact of glycerol organosolv pretreatment on the chemistry and enzymatic hydrolyzability of wheat straw. Bioresour Technol 187:354–361CrossRef Sun FF, Wang L, Hong J, Ren J, Du F, Hu J, Zhang Z, Zhou B (2015) The impact of glycerol organosolv pretreatment on the chemistry and enzymatic hydrolyzability of wheat straw. Bioresour Technol 187:354–361CrossRef
52.
53.
Zurück zum Zitat Saberikhah E, Rovshandeh JM, Rezayati-Charani P (2011) Organosolv pulping of wheat straw by glycerol. Cell Chem Technol 45(1–2):67–75 Saberikhah E, Rovshandeh JM, Rezayati-Charani P (2011) Organosolv pulping of wheat straw by glycerol. Cell Chem Technol 45(1–2):67–75
55.
Zurück zum Zitat Fernández-Rodríguez J, Erdocia X, Sánchez C, Alriols MG, Labidi J (2017) Lignin depolymerization for phenolic monomers production by sustainable processes. J Energy Chem 26:622–631CrossRef Fernández-Rodríguez J, Erdocia X, Sánchez C, Alriols MG, Labidi J (2017) Lignin depolymerization for phenolic monomers production by sustainable processes. J Energy Chem 26:622–631CrossRef
56.
Zurück zum Zitat Avelino F, Silva KT, Mazzetto SE, Lomonaco D (2019) Tailor-made organosolv lignins from coconut wastes: effects of green solvents in microwave-assisted processes upon their structure and antioxidant activities. Bioresour Technol Rep 7:100219CrossRef Avelino F, Silva KT, Mazzetto SE, Lomonaco D (2019) Tailor-made organosolv lignins from coconut wastes: effects of green solvents in microwave-assisted processes upon their structure and antioxidant activities. Bioresour Technol Rep 7:100219CrossRef
57.
Zurück zum Zitat Espinoza-Acosta JL, Torres-Chávez PI, Carvajal-Millán E, Ramírez-Wong B, Bello-Pérez LA, Montaño-Leyva B (2014) Ionic liquids and organic solvents for recovering lignin from lignocellulosic biomass. Bioresources 9(2):3660–3687CrossRef Espinoza-Acosta JL, Torres-Chávez PI, Carvajal-Millán E, Ramírez-Wong B, Bello-Pérez LA, Montaño-Leyva B (2014) Ionic liquids and organic solvents for recovering lignin from lignocellulosic biomass. Bioresources 9(2):3660–3687CrossRef
58.
Zurück zum Zitat Monteil-Rivera F, Phuong M, Ye M, Halasz A, Hawari J (2013) Isolation and characterization of herbaceous lignins for applications in biomaterials. Ind Crop Prod 41:356–364CrossRef Monteil-Rivera F, Phuong M, Ye M, Halasz A, Hawari J (2013) Isolation and characterization of herbaceous lignins for applications in biomaterials. Ind Crop Prod 41:356–364CrossRef
60.
Zurück zum Zitat Li S-X, Li M-F, Bian J, Wu X-F, Peng F, Ma M-G (2019) Preparation of organic acid lignin submicrometer particle as a natural broad-spectrum photo-protection agent. Int J Biol Macromol 132:836–843CrossRef Li S-X, Li M-F, Bian J, Wu X-F, Peng F, Ma M-G (2019) Preparation of organic acid lignin submicrometer particle as a natural broad-spectrum photo-protection agent. Int J Biol Macromol 132:836–843CrossRef
62.
Zurück zum Zitat El Khaldi-Hansen B, Schulze M, Kamm B (2016) Qualitative and quantitative analysis of lignins from different sources and isolation methods for an application as a biobased chemical resource and polymeric material. In: Vaz S Jr (ed) Analytical Techniques and Methods for Biomass. Springer, Switzerland El Khaldi-Hansen B, Schulze M, Kamm B (2016) Qualitative and quantitative analysis of lignins from different sources and isolation methods for an application as a biobased chemical resource and polymeric material. In: Vaz S Jr (ed) Analytical Techniques and Methods for Biomass. Springer, Switzerland
67.
Zurück zum Zitat Maniet G, Schmetz Q, Jacquet N, Temmerman M, Gofflot S, Richel A (2017) Effect of steam explosion treatment on chemical composition and characteristic of organosolv fescue lignin. Ind Crop Prod 99:79–85CrossRef Maniet G, Schmetz Q, Jacquet N, Temmerman M, Gofflot S, Richel A (2017) Effect of steam explosion treatment on chemical composition and characteristic of organosolv fescue lignin. Ind Crop Prod 99:79–85CrossRef
68.
Zurück zum Zitat Perez-Cantu L, Schreiber A, Schütt F, Saake B, Kirsch C, Smirnova I (2013) Comparison of pretreatment methods for rye straw in the second generation biorefinery: effect on cellulose, hemicellulose and lignin recovery. Bioresour Technol 142:428–435CrossRef Perez-Cantu L, Schreiber A, Schütt F, Saake B, Kirsch C, Smirnova I (2013) Comparison of pretreatment methods for rye straw in the second generation biorefinery: effect on cellulose, hemicellulose and lignin recovery. Bioresour Technol 142:428–435CrossRef
69.
Zurück zum Zitat Wörmeyer K, Ingram T, Saake B, Brunner G, Smirnova I (2011) Comparison of different pretreatment methods for lignocellulosic materials. Part II: influence of pretreatment on the properties of rye straw lignin. Bioresour Technol 102:4157–4164CrossRef Wörmeyer K, Ingram T, Saake B, Brunner G, Smirnova I (2011) Comparison of different pretreatment methods for lignocellulosic materials. Part II: influence of pretreatment on the properties of rye straw lignin. Bioresour Technol 102:4157–4164CrossRef
71.
Zurück zum Zitat Wild PJ, Huijgen WJJ, Heeres HJ (2012) Pyrolysis of wheat straw-derived organosolv lignin. J Anal Appl Pyrol 93:95–103CrossRef Wild PJ, Huijgen WJJ, Heeres HJ (2012) Pyrolysis of wheat straw-derived organosolv lignin. J Anal Appl Pyrol 93:95–103CrossRef
72.
Zurück zum Zitat Naidu DS, Hlangothi SP, John MJ (2018) Bio-based products from xylan: a review. Carbohydr Polym 179:28–41CrossRef Naidu DS, Hlangothi SP, John MJ (2018) Bio-based products from xylan: a review. Carbohydr Polym 179:28–41CrossRef
73.
Zurück zum Zitat Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRef Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRef
74.
Zurück zum Zitat Azeez AM, Meier D, Odermatt J, Willner T (2010) Fast pyrolysis of African and European lignocellulosic biomasses using Py-GC/MS and fluidized bed reactor. Energy Fuel 24:2078–2085CrossRef Azeez AM, Meier D, Odermatt J, Willner T (2010) Fast pyrolysis of African and European lignocellulosic biomasses using Py-GC/MS and fluidized bed reactor. Energy Fuel 24:2078–2085CrossRef
75.
Zurück zum Zitat Zhang M, Resende FLP, Moutsoglou A, Raynie DE (2012) Pyrolysis of lignin extracted from prairie cordgrass, aspen, and Kraft lignin by Py-GC/MS and TGA/FTIR. J Anal Appl Pyrol 98:65–71CrossRef Zhang M, Resende FLP, Moutsoglou A, Raynie DE (2012) Pyrolysis of lignin extracted from prairie cordgrass, aspen, and Kraft lignin by Py-GC/MS and TGA/FTIR. J Anal Appl Pyrol 98:65–71CrossRef
82.
Zurück zum Zitat Sjöström E (1993) Wood Chemistry-Fundamentals and Applications. Academic Press, San Diego Sjöström E (1993) Wood Chemistry-Fundamentals and Applications. Academic Press, San Diego
83.
Zurück zum Zitat Pakdel H, Zhang H, Roy C (1994) Production and characterization of carboxylic acids from wood, part II: high molecular weight fatty and resin acids. Bioresour Technol 47:45–53CrossRef Pakdel H, Zhang H, Roy C (1994) Production and characterization of carboxylic acids from wood, part II: high molecular weight fatty and resin acids. Bioresour Technol 47:45–53CrossRef
Metadaten
Titel
Pretreatment of lignocellulosic biomass at atmospheric conditions by using different organosolv liquors: a comparison of lignins
verfasst von
Sibel Başakçılardan Kabakcı
Medya Hatun Tanış
Publikationsdatum
21.03.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 6/2021
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-020-00677-2

Weitere Artikel der Ausgabe 6/2021

Biomass Conversion and Biorefinery 6/2021 Zur Ausgabe