Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 6/2021

27.01.2020 | Original Article

Scheffersomyces stipitis biofilm reactor for ethanol production from acid-pretreated/detoxified and glucose- or xylose-enriched rice husk hydrolysate under a continuous process

verfasst von: Nour Ben Bader, Mustafa Germec, Irfan Turhan

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 6/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ethanol is one of the most important platform chemicals that can be produced in a continuous biofilm reactor. The continuous system can be easily adapted to a biofilm reactor, which is a useful tool for ethanol production by microorganisms. In this study, two different media (the first medium: acid-pretreated/detoxified and glucose-enriched rice husk hydrolysate; the second medium: acid-pretreated/detoxified and xylose-enriched rice husk hydrolysate) were used for ethanol production in a continuous biofilm reactor. Both medium (1.5 L) were supplemented with 1% (w/v) yeast extract and 2% (w/v) peptone. The dilution rate for the first medium was between 0.02 and 0.12 h−1, while for the second medium, it was between 0.01 and 0.05 h−1. When the first medium was used for ethanol fermentation in a continuous system, maximum ethanol productivity of 0.418 g/L/h and maximum biomass productivity of 0.196 g/L/h were yielded at dilution rates of 0.08 and 0.10 h−1, respectively. As for the second medium for ethanol fermentation in a continuous system, their values were 0.083 and 0.079 g/L/h at dilution rates of 0.03 and 0.04 h−1, respectively. Additionally, the yield factors for biomass and ethanol (Y0X/S and Y0P/S) were also found to be 0.642 g X/g S and 0.49 g P/g S for the first medium and 0.254 g X/g S and 0.27 g P/g S for the second medium, respectively. In addition, although cost-effective ethanol production regarding energy cost and recovery time is desired, the use of the non-enriched sterile and enriched non-sterile media in a repeated-batch biofilm reactor caused low fermentation kinetics. Consequently, ethanol production was successfully performed by using Scheffersomyces stipitis in a continuous PCS-biofilm reactor including acid-pretreated/detoxified and glucose- or xylose-enriched rice husk hydrolysate, which gave higher ethanol concentration compared with subsequent ethanol fermentation in a repeated-batch biofilm reactor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Machineni L (2019) Lignocellulosic biofuel production: review of alternatives. Biomass Conversion Biorefinery:1–13 Machineni L (2019) Lignocellulosic biofuel production: review of alternatives. Biomass Conversion Biorefinery:1–13
2.
Zurück zum Zitat Germec M, Bader N, Turhan I (2018) Dilute acid and alkaline pretreatment of spent tea leaves to determine the potential of carbon sources. Biomass Conversion Biorefinery 8(3):529–544 Germec M, Bader N, Turhan I (2018) Dilute acid and alkaline pretreatment of spent tea leaves to determine the potential of carbon sources. Biomass Conversion Biorefinery 8(3):529–544
3.
Zurück zum Zitat Germec M, Demirel F, Tas N, Ozcan A, Yilmazer C, Onuk Z, Turhan I (2017) Microwave-assisted dilute acid pretreatment of different agricultural bioresources for fermentable sugar production. Cellulose 24(10):4337–4353 Germec M, Demirel F, Tas N, Ozcan A, Yilmazer C, Onuk Z, Turhan I (2017) Microwave-assisted dilute acid pretreatment of different agricultural bioresources for fermentable sugar production. Cellulose 24(10):4337–4353
4.
Zurück zum Zitat Germec M, Kartal F, Bilgic M, Ilgin M, Ilhan E, Güldali H, Isci A, Turhan I (2016) Ethanol production from rice hull using Pichia stipitis and optimization of acid pretreatment and detoxification processes. Biotechnol Prog 32(4):872–882 Germec M, Kartal F, Bilgic M, Ilgin M, Ilhan E, Güldali H, Isci A, Turhan I (2016) Ethanol production from rice hull using Pichia stipitis and optimization of acid pretreatment and detoxification processes. Biotechnol Prog 32(4):872–882
5.
Zurück zum Zitat Germec M, Turhan I (2018) Ethanol production from acid-pretreated and detoxified tea processing waste and its modeling. Fuel 231:101–109 Germec M, Turhan I (2018) Ethanol production from acid-pretreated and detoxified tea processing waste and its modeling. Fuel 231:101–109
6.
Zurück zum Zitat Germec M, Turhan I (2018) Ethanol production from acid-pretreated and detoxified rice straw as sole renewable resource. Biomass Conversion Biorefinery 8(3):607–619 Germec M, Turhan I (2018) Ethanol production from acid-pretreated and detoxified rice straw as sole renewable resource. Biomass Conversion Biorefinery 8(3):607–619
7.
Zurück zum Zitat Karagoz P, Bill R, Ozkan M (2019) Lignocellulosic ethanol production: evaluation of new approaches, cell immobilization and reactor configurations. Renew Energy Karagoz P, Bill R, Ozkan M (2019) Lignocellulosic ethanol production: evaluation of new approaches, cell immobilization and reactor configurations. Renew Energy
8.
Zurück zum Zitat Panahi H, Dehhaghi M, Aghbashlo M, Karimi K, Tabatabaei M (2019) Shifting fuel feedstock from oil wells to sea: Iran outlook and potential for biofuel production from brown macroalgae (Ochrophyta; Phaeophyceae). Renew Sust Energ Rev 112:626–642 Panahi H, Dehhaghi M, Aghbashlo M, Karimi K, Tabatabaei M (2019) Shifting fuel feedstock from oil wells to sea: Iran outlook and potential for biofuel production from brown macroalgae (Ochrophyta; Phaeophyceae). Renew Sust Energ Rev 112:626–642
9.
Zurück zum Zitat Panahi H, Dehhaghi M, Aghbashlo M, Karimi K, Tabatabaei M (2020) Conversion of residues from agro-food industry into bioethanol in Iran: an under-valued biofuel additive to phase out MTBE in gasoline. Renew Energy 145:699–710 Panahi H, Dehhaghi M, Aghbashlo M, Karimi K, Tabatabaei M (2020) Conversion of residues from agro-food industry into bioethanol in Iran: an under-valued biofuel additive to phase out MTBE in gasoline. Renew Energy 145:699–710
10.
Zurück zum Zitat Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38(4):522–550 Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38(4):522–550
11.
Zurück zum Zitat Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112 Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112
12.
Zurück zum Zitat Larsson S, Reimann A, Nilvebrant N, Jönsson L (1999) Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol 77(1):91–103 Larsson S, Reimann A, Nilvebrant N, Jönsson L (1999) Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol 77(1):91–103
13.
Zurück zum Zitat Mussatto S, Roberto I (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93(1):1–10 Mussatto S, Roberto I (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93(1):1–10
14.
Zurück zum Zitat Kazemi Shariat Panahi H, Dehhaghi M, Kinder J, Ezeji T (2019) A review on green liquid fuels for the transportation sector: a prospect of microbial solutions to climate change. Biofuel Res J 6(3):995–1024 Kazemi Shariat Panahi H, Dehhaghi M, Kinder J, Ezeji T (2019) A review on green liquid fuels for the transportation sector: a prospect of microbial solutions to climate change. Biofuel Res J 6(3):995–1024
15.
Zurück zum Zitat Sarris D, Papanikolaou S (2016) Biotechnological production of ethanol: biochemistry, processes and technologies. Eng Life Sci 16(4):307–329 Sarris D, Papanikolaou S (2016) Biotechnological production of ethanol: biochemistry, processes and technologies. Eng Life Sci 16(4):307–329
16.
Zurück zum Zitat Unrean P, Nguyen N (2012) Rational optimization of culture conditions for the most efficient ethanol production in Scheffersomyces stipitis using design of experiments. Biotechnol Prog 28(5):1119–1125 Unrean P, Nguyen N (2012) Rational optimization of culture conditions for the most efficient ethanol production in Scheffersomyces stipitis using design of experiments. Biotechnol Prog 28(5):1119–1125
17.
Zurück zum Zitat Yücel H, Aksu Z (2015) Ethanol fermentation characteristics of Pichia stipitis yeast from sugar beet pulp hydrolysate: use of new detoxification methods. Fuel 158:793–799 Yücel H, Aksu Z (2015) Ethanol fermentation characteristics of Pichia stipitis yeast from sugar beet pulp hydrolysate: use of new detoxification methods. Fuel 158:793–799
18.
Zurück zum Zitat Papini M, Nookaew I, Uhlén M, Nielsen J (2012) Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae. Microb Cell Factories 11(1):136 Papini M, Nookaew I, Uhlén M, Nielsen J (2012) Scheffersomyces stipitis: a comparative systems biology study with the Crabtree positive yeast Saccharomyces cerevisiae. Microb Cell Factories 11(1):136
19.
Zurück zum Zitat Agbogbo F, Coward-Kelly G (2008) Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 30(9):1515–1524 Agbogbo F, Coward-Kelly G (2008) Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 30(9):1515–1524
20.
Zurück zum Zitat Cheng K, Demirci A, Catchmark J (2010) Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol 87(2):445–456 Cheng K, Demirci A, Catchmark J (2010) Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol 87(2):445–456
21.
Zurück zum Zitat Ercan D, Demirci A (2015) Current and future trends for biofilm reactors for fermentation processes. Crit Rev Biotechnol 35(1):1–14 Ercan D, Demirci A (2015) Current and future trends for biofilm reactors for fermentation processes. Crit Rev Biotechnol 35(1):1–14
22.
Zurück zum Zitat Germec M, Karhan M, Demirci A, Turhan I (2018) Ethanol production in a biofilm reactor with non-sterile carob extract media and its modeling. Energy Sources Part A 40(22):2726–2734 Germec M, Karhan M, Demirci A, Turhan I (2018) Ethanol production in a biofilm reactor with non-sterile carob extract media and its modeling. Energy Sources Part A 40(22):2726–2734
23.
Zurück zum Zitat Germec M, Turhan I, Demirci A, Karhan M (2016) Effect of media sterilization and enrichment on ethanol production from carob extract in a biofilm reactor. Energy Sources Part A 38(21):3268–3272 Germec M, Turhan I, Demirci A, Karhan M (2016) Effect of media sterilization and enrichment on ethanol production from carob extract in a biofilm reactor. Energy Sources Part A 38(21):3268–3272
24.
Zurück zum Zitat Germec M, Turhan I, Karhan M, Demirci A (2015) Ethanol production via repeated-batch fermentation from carob pod extract by using Saccharomyces cerevisiae in biofilm reactor. Fuel 161:304–311 Germec M, Turhan I, Karhan M, Demirci A (2015) Ethanol production via repeated-batch fermentation from carob pod extract by using Saccharomyces cerevisiae in biofilm reactor. Fuel 161:304–311
25.
Zurück zum Zitat Germec M, Yatmaz E, Karahalil E, Turhan I (2017) Effect of different fermentation strategies on β-mannanase production in fed-batch bioreactor system. 3. Biotech 7(1):77 Germec M, Yatmaz E, Karahalil E, Turhan I (2017) Effect of different fermentation strategies on β-mannanase production in fed-batch bioreactor system. 3. Biotech 7(1):77
26.
Zurück zum Zitat Cheng K, Catchmark J, Demirci A (2011) Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules 12(3):730–736 Cheng K, Catchmark J, Demirci A (2011) Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules 12(3):730–736
27.
Zurück zum Zitat Ercan D, Demirci A (2015) Effects of fed-batch and continuous fermentations on human lysozyme production by Kluyveromyces lactis K7 in biofilm reactors. Bioprocess Biosyst Eng 38(12):2461–2468 Ercan D, Demirci A (2015) Effects of fed-batch and continuous fermentations on human lysozyme production by Kluyveromyces lactis K7 in biofilm reactors. Bioprocess Biosyst Eng 38(12):2461–2468
28.
Zurück zum Zitat Pongtharangku T, Demirci A (2007) Online recovery of nisin during fermentation and its effect on nisin production in biofilm reactor. Appl Microbiol Biotechnol 74(3):555–562 Pongtharangku T, Demirci A (2007) Online recovery of nisin during fermentation and its effect on nisin production in biofilm reactor. Appl Microbiol Biotechnol 74(3):555–562
29.
Zurück zum Zitat Cheng K, Demirci A, Catchmark J (2011) Continuous pullulan fermentation in a biofilm reactor. Appl Microbiol Biotechnol 90(3):921–927 Cheng K, Demirci A, Catchmark J (2011) Continuous pullulan fermentation in a biofilm reactor. Appl Microbiol Biotechnol 90(3):921–927
30.
Zurück zum Zitat Urbance S, Pometto A, DiSpirito A, Denli Y (2004) Evaluation of succinic acid continuous and repeat-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl Microbiol Biotechnol 65(6):664–670 Urbance S, Pometto A, DiSpirito A, Denli Y (2004) Evaluation of succinic acid continuous and repeat-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl Microbiol Biotechnol 65(6):664–670
31.
Zurück zum Zitat Mahdinia E, Demirci A, Berenjian A (2018) Optimization of Bacillus subtilis natto growth parameters in glycerol-based medium for vitamin K (Menaquinone-7) production in biofilm reactors. Bioprocess Biosyst Eng 41(2):195–204 Mahdinia E, Demirci A, Berenjian A (2018) Optimization of Bacillus subtilis natto growth parameters in glycerol-based medium for vitamin K (Menaquinone-7) production in biofilm reactors. Bioprocess Biosyst Eng 41(2):195–204
32.
Zurück zum Zitat Cotton J, Pometto A, Gvozdenovic-Jeremic J (2001) Continuous lactic acid fermentation using a plastic composite support biofilm reactor. Appl Microbiol Biotechnol 57(5–6):626–630 Cotton J, Pometto A, Gvozdenovic-Jeremic J (2001) Continuous lactic acid fermentation using a plastic composite support biofilm reactor. Appl Microbiol Biotechnol 57(5–6):626–630
33.
Zurück zum Zitat Liu J-M, Yu T-C, Lin S-P, Hsu R-J, Hsu K-D, Cheng K-C (2016) Evaluation of kojic acid production in a repeated-batch PCS biofilm reactor. J Biotechnol 218:41–48 Liu J-M, Yu T-C, Lin S-P, Hsu R-J, Hsu K-D, Cheng K-C (2016) Evaluation of kojic acid production in a repeated-batch PCS biofilm reactor. J Biotechnol 218:41–48
34.
Zurück zum Zitat Ho K, Pometto A, Hinz P, Dickson J, Demirci A (1997) Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus. Appl Environ Microbiol 63(7):2516–2523 Ho K, Pometto A, Hinz P, Dickson J, Demirci A (1997) Ingredient selection for plastic composite supports for L-(+)-lactic acid biofilm fermentation by Lactobacillus casei subsp. rhamnosus. Appl Environ Microbiol 63(7):2516–2523
35.
Zurück zum Zitat Türker M (2005) Reaksiyon kinetiğinin modellenmesi. In: Türker M (ed) Biyoreaksiyon Mühendisliği, 1st edn. Su Vakfı Yayınları, Kocaeli, pp 241–299 Türker M (2005) Reaksiyon kinetiğinin modellenmesi. In: Türker M (ed) Biyoreaksiyon Mühendisliği, 1st edn. Su Vakfı Yayınları, Kocaeli, pp 241–299
36.
Zurück zum Zitat Germec M, Ozcan A, Yilmazer C, Tas N, Onuk Z, Demirel F, Turhan I (2017) Ethanol fermentation from microwave-assisted acid pretreated raw materials by Scheffersomyces stipitis. AgroLife Sci J 6(1):112–118 Germec M, Ozcan A, Yilmazer C, Tas N, Onuk Z, Demirel F, Turhan I (2017) Ethanol fermentation from microwave-assisted acid pretreated raw materials by Scheffersomyces stipitis. AgroLife Sci J 6(1):112–118
37.
Zurück zum Zitat Germec M, Kartal F, Guldali H, Bilgic M, Isci A, Turhan I (2016) Obtaining growth curves for Scheffersomyces stipitis strains and their modeling. Sci Bull Ser F Biotechnol 20:263–268 Germec M, Kartal F, Guldali H, Bilgic M, Isci A, Turhan I (2016) Obtaining growth curves for Scheffersomyces stipitis strains and their modeling. Sci Bull Ser F Biotechnol 20:263–268
38.
Zurück zum Zitat Miller G (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428 Miller G (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428
39.
Zurück zum Zitat Kunduru M, Pometto A (1996) Continuous ethanol production by Zymomonas mobilis and Saccharomyces cerevisiae in biofilm reactors. J Ind Microbiol 16(4):249–256 Kunduru M, Pometto A (1996) Continuous ethanol production by Zymomonas mobilis and Saccharomyces cerevisiae in biofilm reactors. J Ind Microbiol 16(4):249–256
40.
Zurück zum Zitat Demirci A, Pometto A, Ho K (1997) Ethanol production by Saccharomyces cerevisiae in biofilm reactors. J Ind Microbiol Biotechnol 19(4):299–304 Demirci A, Pometto A, Ho K (1997) Ethanol production by Saccharomyces cerevisiae in biofilm reactors. J Ind Microbiol Biotechnol 19(4):299–304
41.
Zurück zum Zitat Nigam J (1999) Continuous ethanol production from pineapple cannery waste. J Biotechnol 72(3):197–202 Nigam J (1999) Continuous ethanol production from pineapple cannery waste. J Biotechnol 72(3):197–202
42.
Zurück zum Zitat Nigam J (2000) Continuous ethanol production from pineapple cannery waste using immobilized yeast cells. J Biotechnol 80(2):189–193 Nigam J (2000) Continuous ethanol production from pineapple cannery waste using immobilized yeast cells. J Biotechnol 80(2):189–193
43.
Zurück zum Zitat Sun Z, Tang Y, Iwanaga T, Sho T, Kida K (2011) Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. Bioresour Technol 102(23):10929–10935 Sun Z, Tang Y, Iwanaga T, Sho T, Kida K (2011) Production of fuel ethanol from bamboo by concentrated sulfuric acid hydrolysis followed by continuous ethanol fermentation. Bioresour Technol 102(23):10929–10935
44.
Zurück zum Zitat Purwadi R, Taherzadeh M (2008) The performance of serial bioreactors in rapid continuous production of ethanol from dilute-acid hydrolyzates using immobilized cells. Bioresour Technol 99(7):2226–2233 Purwadi R, Taherzadeh M (2008) The performance of serial bioreactors in rapid continuous production of ethanol from dilute-acid hydrolyzates using immobilized cells. Bioresour Technol 99(7):2226–2233
45.
Zurück zum Zitat Todhanakasem T, Sangsutthiseree A, Areerat K, Young GM, Thanonkeo P (2014) Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate. New Biotechnol 31(5):451–459 Todhanakasem T, Sangsutthiseree A, Areerat K, Young GM, Thanonkeo P (2014) Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate. New Biotechnol 31(5):451–459
46.
Zurück zum Zitat Todhanakasem T, Salangsing O, Koomphongse P, Kanokratana P, Champreda V (2019) Zymomonas mobilis biofilm reactor for ethanol production using rice straw hydrolysate under continuous and repeated batch processes. Front Microbiol 10:1777 Todhanakasem T, Salangsing O, Koomphongse P, Kanokratana P, Champreda V (2019) Zymomonas mobilis biofilm reactor for ethanol production using rice straw hydrolysate under continuous and repeated batch processes. Front Microbiol 10:1777
47.
Zurück zum Zitat Qureshi N, Lai L, Blaschek H (2004) Scale-up of a high productivity continuous biofilm reactor to produce butanol by adsorbed cells of Clostridium beijerinckii. Food Bioprod Process 82(2):164–173 Qureshi N, Lai L, Blaschek H (2004) Scale-up of a high productivity continuous biofilm reactor to produce butanol by adsorbed cells of Clostridium beijerinckii. Food Bioprod Process 82(2):164–173
48.
Zurück zum Zitat Roukas T (1994) Ethanol production from nonsterilized carob pod extract by free and immobilized Saccharomyces cerevisiae cells using fed-batch culture. Biotechnol Bioeng 43(3):189–194 Roukas T (1994) Ethanol production from nonsterilized carob pod extract by free and immobilized Saccharomyces cerevisiae cells using fed-batch culture. Biotechnol Bioeng 43(3):189–194
49.
Zurück zum Zitat Roukas T (1994) Kinetics of ethanol production from carob pods extract by immobilized Saccharomyces cerevisiae cells. Appl Biochem Biotechnol 44(1):49–64 Roukas T (1994) Kinetics of ethanol production from carob pods extract by immobilized Saccharomyces cerevisiae cells. Appl Biochem Biotechnol 44(1):49–64
50.
Zurück zum Zitat Clementz A, Aimaretti N, Manuale D, Codevilla A, Yori J (2015) Optimization of ethanol fermentation from discarded carrots using immobilized Saccharomyces cerevisiae. Int J Energy Environ Eng 6(2):129–135 Clementz A, Aimaretti N, Manuale D, Codevilla A, Yori J (2015) Optimization of ethanol fermentation from discarded carrots using immobilized Saccharomyces cerevisiae. Int J Energy Environ Eng 6(2):129–135
51.
Zurück zum Zitat Rosen M (2018) Environmental sustainability tools in the biofuel industry. Biofuel Res J 5(1):751–752 Rosen M (2018) Environmental sustainability tools in the biofuel industry. Biofuel Res J 5(1):751–752
Metadaten
Titel
Scheffersomyces stipitis biofilm reactor for ethanol production from acid-pretreated/detoxified and glucose- or xylose-enriched rice husk hydrolysate under a continuous process
verfasst von
Nour Ben Bader
Mustafa Germec
Irfan Turhan
Publikationsdatum
27.01.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 6/2021
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-020-00611-6

Weitere Artikel der Ausgabe 6/2021

Biomass Conversion and Biorefinery 6/2021 Zur Ausgabe