Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 4/2021

03.01.2021 | Research Article-Computer Engineering and Computer Science

Probabilistic Neural Network-based Model for Identification of Parkinson’s Disease by using Voice Profile and Personal Data

verfasst von: T. Pandu Ranga Vital, Janmenjoy Nayak, Bighnaraj Naik, D. Jayaram

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Parkinson’s disease (PD) is an aging neurological disease deficiencies dopamine and occupies the second position among the neurological disease after the Alzheimer’s in the world. The identification of PD in the early stage is extremely advanced and expensive. Many researchers investigated on PD in divergent ways and different approaches to identifying the PD in the early stage with low cost. One of the effective approaches such as PD voice analysis is an important topic in the current decade. In this paper, a novel probabilistic neural network-based approach is proposed for analyzing the PD. The major objective of this paper is to develop a highly accurate probabilistic neural network-based intelligent approach for the identification and classification of PD diseases. The inputs are considered as 1200 sound records as vowel vocalizations ‘a’, ‘e’, ‘i’, ‘o’, and ‘u’ in different timings (morning, mid-day, and night) of the day from 62 PD and 51 non-PD individuals. From the experimental analysis, it is evident that the performance of the dataset with PNN is increased proportionally to the incremental neurons in the hidden layer of PNN up to seven and it is found 100% accuracy with minimum time and gradient values. The projected PNN model with seven hidden layer neurons is a very powerful tool for predicting the PD in early detections with minimum cost. Comparative analysis with other standard machine learning approaches is evident towards the superiority of the proposed PNN model performance for successful identification of PD through voice analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Shulman, J.M.; De Jager, P.L.; Feany, M.B.: Parkinson’s disease: genetics and pathogenesis. Annu. Rev. Pathol. Mech. Dis. 6, 193–222 (2011)CrossRef Shulman, J.M.; De Jager, P.L.; Feany, M.B.: Parkinson’s disease: genetics and pathogenesis. Annu. Rev. Pathol. Mech. Dis. 6, 193–222 (2011)CrossRef
2.
Zurück zum Zitat Scott, L.E.; Orvig, C.: Medicinal inorganic chemistry approaches to passivation and removal of aberrant metal ions in disease. Chem. Rev. 109(10), 4885–4910 (2009)CrossRef Scott, L.E.; Orvig, C.: Medicinal inorganic chemistry approaches to passivation and removal of aberrant metal ions in disease. Chem. Rev. 109(10), 4885–4910 (2009)CrossRef
4.
Zurück zum Zitat Francelle, L.; Outeiro, T.F.; Rappold, G.A.: Inhibition of HDAC6 activity protects dopaminergic neurons from alpha-synuclein toxicity. Sci. Rep. 10(1), 1–14 (2020)CrossRef Francelle, L.; Outeiro, T.F.; Rappold, G.A.: Inhibition of HDAC6 activity protects dopaminergic neurons from alpha-synuclein toxicity. Sci. Rep. 10(1), 1–14 (2020)CrossRef
5.
Zurück zum Zitat Frucht, S. J.; Termsarasab, P.: Genetics in Movement Disorder Phenomenology. In: Movement Disorders Phenomenology, pp. 293–303. Springer, Cham (2020) Frucht, S. J.; Termsarasab, P.: Genetics in Movement Disorder Phenomenology. In: Movement Disorders Phenomenology, pp. 293–303. Springer, Cham (2020)
6.
Zurück zum Zitat Tracy, J.M.; Özkanca, Y.; Atkins, D.C.; Ghomi, R.H.: Investigating voice as a biomarker: deep phenotyping methods for early detection of Parkinson’s disease. J. Biomed. Inform. 104, 103362 (2020)CrossRef Tracy, J.M.; Özkanca, Y.; Atkins, D.C.; Ghomi, R.H.: Investigating voice as a biomarker: deep phenotyping methods for early detection of Parkinson’s disease. J. Biomed. Inform. 104, 103362 (2020)CrossRef
7.
Zurück zum Zitat Thijs, Z.; Watts, C. R.: Perceptual Characterization of Voice Quality in Nonadvanced Stages of Parkinson’s Disease. J. Voice. (2020) Thijs, Z.; Watts, C. R.: Perceptual Characterization of Voice Quality in Nonadvanced Stages of Parkinson’s Disease. J. Voice. (2020)
10.
Zurück zum Zitat Müller, H.; Michoux, N.; Bandon, D.; Geissbuhler, A.: A review of content-based image retrieval systems in medical applications—clinical benefits and future directions. Int. J. Med. Informatics 73(1), 1–23 (2004)CrossRef Müller, H.; Michoux, N.; Bandon, D.; Geissbuhler, A.: A review of content-based image retrieval systems in medical applications—clinical benefits and future directions. Int. J. Med. Informatics 73(1), 1–23 (2004)CrossRef
11.
Zurück zum Zitat Streit, R.L.; Luginbuhl, T.E.: Maximum likelihood training of probabilistic neural networks. IEEE Trans. Neural Netw. 5(5), 764–783 (1994)CrossRef Streit, R.L.; Luginbuhl, T.E.: Maximum likelihood training of probabilistic neural networks. IEEE Trans. Neural Netw. 5(5), 764–783 (1994)CrossRef
12.
Zurück zum Zitat Hoya, T.: On the capability of accommodating new classes within probabilistic neural networks. IEEE Trans. Neural Netw. 14(2), 450–453 (2003)CrossRef Hoya, T.: On the capability of accommodating new classes within probabilistic neural networks. IEEE Trans. Neural Netw. 14(2), 450–453 (2003)CrossRef
13.
Zurück zum Zitat Jwo, D.J.; Lai, C.C.: Neural network-based GPS GDOP approximation and classification. GPS Solut. 11(1), 51–60 (2007)CrossRef Jwo, D.J.; Lai, C.C.: Neural network-based GPS GDOP approximation and classification. GPS Solut. 11(1), 51–60 (2007)CrossRef
15.
Zurück zum Zitat Benmalek, E.; Elmhamdi, J.; Jilbab, A.: Multiclass classification of Parkinson’s disease using different classifiers and LLBFS feature selection algorithm. Int. J. Speech Technol. 20(1), 179–184 (2017)CrossRef Benmalek, E.; Elmhamdi, J.; Jilbab, A.: Multiclass classification of Parkinson’s disease using different classifiers and LLBFS feature selection algorithm. Int. J. Speech Technol. 20(1), 179–184 (2017)CrossRef
16.
Zurück zum Zitat Chen, H.L.; Huang, C.C.; Yu, X.G.; Xu, X.; Sun, X.; Wang, G.; Wang, S.J.: An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach. Expert Syst. Appl. 40(1), 263–271 (2013)CrossRef Chen, H.L.; Huang, C.C.; Yu, X.G.; Xu, X.; Sun, X.; Wang, G.; Wang, S.J.: An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach. Expert Syst. Appl. 40(1), 263–271 (2013)CrossRef
17.
Zurück zum Zitat Oguz, H.; Demirci, M.; Safak, M.A.; Arslan, N.; Islam, A.; Kargin, S.: Effects of unilateral vocal cord paralysis on objective voice measures obtained by Praat. Eur. Arch. Otorhinolaryngol. 264(3), 257–261 (2007)CrossRef Oguz, H.; Demirci, M.; Safak, M.A.; Arslan, N.; Islam, A.; Kargin, S.: Effects of unilateral vocal cord paralysis on objective voice measures obtained by Praat. Eur. Arch. Otorhinolaryngol. 264(3), 257–261 (2007)CrossRef
18.
Zurück zum Zitat Rusz, J.; Cmejla, R.; Ruzickova, H.; Ruzicka, E.: Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson’s disease. J Acoust. Soc. Am. 129(1), 350–367 (2011)CrossRef Rusz, J.; Cmejla, R.; Ruzickova, H.; Ruzicka, E.: Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson’s disease. J Acoust. Soc. Am. 129(1), 350–367 (2011)CrossRef
19.
Zurück zum Zitat Benba, A.; Jilbab, A.; Hammouch, A.: Using human factor cepstral coefficient on multiple types of voice recordings for detecting patients with Parkinson’s Disease. IRBM 38(6), 346–351 (2017)CrossRef Benba, A.; Jilbab, A.; Hammouch, A.: Using human factor cepstral coefficient on multiple types of voice recordings for detecting patients with Parkinson’s Disease. IRBM 38(6), 346–351 (2017)CrossRef
20.
Zurück zum Zitat Diogo, D.; Tian, C.; Franklin, C.; Alanne-Kinnunen, M.; March, M.; Spencer, C.; Sleiman, P.: Phenome-wide association studies (PheWAS) across large “real-world data” population cohorts support drug target validation. bioRxiv. 218875. Doi: https://doi.org/10.1101/218875 (2017) Diogo, D.; Tian, C.; Franklin, C.; Alanne-Kinnunen, M.; March, M.; Spencer, C.; Sleiman, P.: Phenome-wide association studies (PheWAS) across large “real-world data” population cohorts support drug target validation. bioRxiv. 218875. Doi: https://​doi.​org/​10.​1101/​218875 (2017)
22.
Zurück zum Zitat Tsuboi, T.; Watanabe, H.; Tanaka, Y.; Ohdake, R.; Hattori, M.; Kawabata, K.; Maesawa, S.: Early detection of speech and voice disorders in Parkinson’s disease patients treated with subthalamic nucleus deep brain stimulation: a 1-year follow-up study. J. Neural Transm. 124(12), 1547–1556 (2017)CrossRef Tsuboi, T.; Watanabe, H.; Tanaka, Y.; Ohdake, R.; Hattori, M.; Kawabata, K.; Maesawa, S.: Early detection of speech and voice disorders in Parkinson’s disease patients treated with subthalamic nucleus deep brain stimulation: a 1-year follow-up study. J. Neural Transm. 124(12), 1547–1556 (2017)CrossRef
24.
Zurück zum Zitat Abdulhay, E.; Arunkumar, N.; Narasimhan, K.; Vellaiappan, E.; Venkatraman, V.: Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease. Future Gener. Comput. Syst. 83, 366–373 (2018)CrossRef Abdulhay, E.; Arunkumar, N.; Narasimhan, K.; Vellaiappan, E.; Venkatraman, V.: Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease. Future Gener. Comput. Syst. 83, 366–373 (2018)CrossRef
25.
Zurück zum Zitat Shahbakhi, M.; Far, D.T.; Tahami, E.: Speech analysis for diagnosis of parkinson’s disease using genetic algorithm and support vector machine. J. Biomed. Sci. Eng. 7(4), 147–156 (2014)CrossRef Shahbakhi, M.; Far, D.T.; Tahami, E.: Speech analysis for diagnosis of parkinson’s disease using genetic algorithm and support vector machine. J. Biomed. Sci. Eng. 7(4), 147–156 (2014)CrossRef
26.
Zurück zum Zitat Sakar, B. E.; Sakar, C. O.; Serbes, G.; Kursun, O.: Determination of the optimal threshold value that can be discriminated by dysphonia measurements for unified Parkinson’s Disease rating scale. In: 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 1–4. IEEE (2015). Sakar, B. E.; Sakar, C. O.; Serbes, G.; Kursun, O.: Determination of the optimal threshold value that can be discriminated by dysphonia measurements for unified Parkinson’s Disease rating scale. In: 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 1–4. IEEE (2015).
28.
Zurück zum Zitat Astrom, F.; Koker, R.: A parallel neural network approach to prediction of Parkinson’s disease. Expert Syst. Appl. 38(10), 12470–12474 (2011)CrossRef Astrom, F.; Koker, R.: A parallel neural network approach to prediction of Parkinson’s disease. Expert Syst. Appl. 38(10), 12470–12474 (2011)CrossRef
31.
Zurück zum Zitat Karan, B.; Sahu, S.S.; Mahto, K.: Parkinson disease prediction using intrinsic mode function based features from speech signal. Biocybernet. Biomed. Eng. 40(1), 249–264 (2020)CrossRef Karan, B.; Sahu, S.S.; Mahto, K.: Parkinson disease prediction using intrinsic mode function based features from speech signal. Biocybernet. Biomed. Eng. 40(1), 249–264 (2020)CrossRef
32.
Zurück zum Zitat Wanjale, K.; Nagapurkar, M.; Kaldate, P.; Kumbhar, O.; Bala, S.: Artificial Neural Network to Prescient the Severity of Parkinson’s Disease. In: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 174–179. IEEE (2020) Wanjale, K.; Nagapurkar, M.; Kaldate, P.; Kumbhar, O.; Bala, S.: Artificial Neural Network to Prescient the Severity of Parkinson’s Disease. In: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 174–179. IEEE (2020)
33.
Zurück zum Zitat Moro-Velazquez, L.; Villalba, J.; Dehak, N.: Using X-Vectors to Automatically Detect Parkinson’s Disease from Speech. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1155–1159. IEEE (2020) Moro-Velazquez, L.; Villalba, J.; Dehak, N.: Using X-Vectors to Automatically Detect Parkinson’s Disease from Speech. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1155–1159. IEEE (2020)
34.
Zurück zum Zitat Asmae, O.; Abdelhadi, R.; Bouchaib, C.; Sara, S.; Tajeddine, K.: Parkinson’s Disease Identification using KNN and ANN Algorithms based on Voice Disorder. In: 2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), pp. 1–6. IEEE (2020) Asmae, O.; Abdelhadi, R.; Bouchaib, C.; Sara, S.; Tajeddine, K.: Parkinson’s Disease Identification using KNN and ANN Algorithms based on Voice Disorder. In: 2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), pp. 1–6. IEEE (2020)
35.
Zurück zum Zitat Sood, T.; Khandnor, P.: Classification of Parkinson’s Disease Using Various Machine Learning Techniques. In: International Conference on Advances in Computing and Data Sciences, pp. 296–311. Springer, Singapore (2019) Sood, T.; Khandnor, P.: Classification of Parkinson’s Disease Using Various Machine Learning Techniques. In: International Conference on Advances in Computing and Data Sciences, pp. 296–311. Springer, Singapore (2019)
36.
Zurück zum Zitat Ali, L.; Zhu, C.; Zhou, M.; Liu, Y.: Early diagnosis of Parkinson’s disease from multiple voice recordings by simultaneous sample and feature selection. Expert Syst. Appl. 137, 22–28 (2019)CrossRef Ali, L.; Zhu, C.; Zhou, M.; Liu, Y.: Early diagnosis of Parkinson’s disease from multiple voice recordings by simultaneous sample and feature selection. Expert Syst. Appl. 137, 22–28 (2019)CrossRef
37.
Zurück zum Zitat Braga, D.; Madureira, A.M.; Coelho, L.; Ajith, R.: Automatic detection of Parkinson’s disease based on acoustic analysis of speech. Eng. Appl. Artif. Intell. 77, 148–158 (2019)CrossRef Braga, D.; Madureira, A.M.; Coelho, L.; Ajith, R.: Automatic detection of Parkinson’s disease based on acoustic analysis of speech. Eng. Appl. Artif. Intell. 77, 148–158 (2019)CrossRef
38.
Zurück zum Zitat Lahmiri, S.; Shmuel, A.: Detection of Parkinson’s disease based on voice patterns ranking and optimized support vector machine. Biomed. Signal Process. Control 49, 427–433 (2019)CrossRef Lahmiri, S.; Shmuel, A.: Detection of Parkinson’s disease based on voice patterns ranking and optimized support vector machine. Biomed. Signal Process. Control 49, 427–433 (2019)CrossRef
39.
Zurück zum Zitat Berus, L.; Klancnik, S.; Brezocnik, M.; Ficko, M.: Classifying Parkinson’s disease based on acoustic measures using artificial neural networks. Sensors 19(1), 16 (2019)CrossRef Berus, L.; Klancnik, S.; Brezocnik, M.; Ficko, M.: Classifying Parkinson’s disease based on acoustic measures using artificial neural networks. Sensors 19(1), 16 (2019)CrossRef
40.
Zurück zum Zitat Johri, A.; Tripathi, A.: Parkinson Disease Detection Using Deep Neural Networks. In: 2019 Twelfth International Conference on Contemporary Computing (IC3), pp. 1–4. IEEE (2019). Johri, A.; Tripathi, A.: Parkinson Disease Detection Using Deep Neural Networks. In: 2019 Twelfth International Conference on Contemporary Computing (IC3), pp. 1–4. IEEE (2019).
41.
Zurück zum Zitat Aich, S.; Younga, K.; Hui, K. L.; Al-Absi, A. A.; Sain, M.: A nonlinear decision tree based classification approach to predict the Parkinson’s disease using different feature sets of voice data. In: 2018 20th International Conference on Advanced Communication Technology” (ICACT), pp. 638–642. IEEE (2018) Aich, S.; Younga, K.; Hui, K. L.; Al-Absi, A. A.; Sain, M.: A nonlinear decision tree based classification approach to predict the Parkinson’s disease using different feature sets of voice data. In: 2018 20th International Conference on Advanced Communication Technology” (ICACT), pp. 638–642. IEEE (2018)
42.
Zurück zum Zitat Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adeli, H.; Subha, D.P.: Automated EEG-based screening of depression using deep convolutional neural network. Comput. Methods Programs Biomed. 161, 103–113 (2018)CrossRef Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tan, J.H.; Adeli, H.; Subha, D.P.: Automated EEG-based screening of depression using deep convolutional neural network. Comput. Methods Programs Biomed. 161, 103–113 (2018)CrossRef
43.
Zurück zum Zitat Mostafa, S. A.; Mustapha, A.; Khaleefah, S. H.; Ahmad, M. S.; Mohammed, M. A.: Evaluating the performance of three classification methods in diagnosis of Parkinson’s disease. In: International Conference on Soft Computing and Data Mining, pp. 43–52. Springer, Cham (2018) Mostafa, S. A.; Mustapha, A.; Khaleefah, S. H.; Ahmad, M. S.; Mohammed, M. A.: Evaluating the performance of three classification methods in diagnosis of Parkinson’s disease. In: International Conference on Soft Computing and Data Mining, pp. 43–52. Springer, Cham (2018)
44.
Zurück zum Zitat Gürüler, H.: A novel diagnosis system for Parkinson’s disease using complex-valued artificial neural network with k-means clustering feature weighting method. Neural Comput. Appl. 28(7), 1657–1666 (2017)CrossRef Gürüler, H.: A novel diagnosis system for Parkinson’s disease using complex-valued artificial neural network with k-means clustering feature weighting method. Neural Comput. Appl. 28(7), 1657–1666 (2017)CrossRef
45.
Zurück zum Zitat Sheibani, R.; Nikookar, E.; Alavi, S.E.: An ensemble method for diagnosis of Parkinson’s disease based on voice measurements. J. Med. Signals Sens. 9(4), 221 (2017) Sheibani, R.; Nikookar, E.; Alavi, S.E.: An ensemble method for diagnosis of Parkinson’s disease based on voice measurements. J. Med. Signals Sens. 9(4), 221 (2017)
46.
Zurück zum Zitat El Maachi, I.; Bilodeau, G.A.; Bouachir, W.: Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait. Expert Syst. Appl. 143, 113075 (2020)CrossRef El Maachi, I.; Bilodeau, G.A.; Bouachir, W.: Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait. Expert Syst. Appl. 143, 113075 (2020)CrossRef
47.
Zurück zum Zitat Alharbi, A.: A genetic-ELM neural network computational method for diagnosis of the Parkinson disease gait dataset. Int. J. Comput. Math. 97(5), 1087–1099 (2020)MathSciNetCrossRef Alharbi, A.: A genetic-ELM neural network computational method for diagnosis of the Parkinson disease gait dataset. Int. J. Comput. Math. 97(5), 1087–1099 (2020)MathSciNetCrossRef
48.
Zurück zum Zitat Specht, D.F.: Probabilistic neural networks. Neural Netw. 3(1), 109–118 (1990)CrossRef Specht, D.F.: Probabilistic neural networks. Neural Netw. 3(1), 109–118 (1990)CrossRef
49.
Zurück zum Zitat Gil, D.; Manuel, D.J.: Diagnosing Parkinson by using artificial neural networks and support vector machines. Global J. Comput. Sci. Technol. 9(4), 56 (2009) Gil, D.; Manuel, D.J.: Diagnosing Parkinson by using artificial neural networks and support vector machines. Global J. Comput. Sci. Technol. 9(4), 56 (2009)
50.
Zurück zum Zitat Little, M.; McSharry, P.; Hunter, E.; Spielman, J.; Ramig, L.: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. In: Nature proceedings, pp. 1–1 (2020). Little, M.; McSharry, P.; Hunter, E.; Spielman, J.; Ramig, L.: Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. In: Nature proceedings, pp. 1–1 (2020).
51.
Zurück zum Zitat Tsanas, A.; Little, M.A.; McSharry, P.E.; Spielman, J.; Ramig, L.O.: Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease. IEEE Trans. Biomed. Eng. 59(5), 1264–1271 (2020)CrossRef Tsanas, A.; Little, M.A.; McSharry, P.E.; Spielman, J.; Ramig, L.O.: Novel speech signal processing algorithms for high-accuracy classification of Parkinson’s disease. IEEE Trans. Biomed. Eng. 59(5), 1264–1271 (2020)CrossRef
52.
Zurück zum Zitat Sakar, B.E.; Isenkul, M.E.; Sakar, C.O.; Sertbas, A.; Gurgen, F.; Delil, S.; Apaydin, H.; Kursun, O.: Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J. Biomed. Health Inf. 17(4), 828–834 (2013)CrossRef Sakar, B.E.; Isenkul, M.E.; Sakar, C.O.; Sertbas, A.; Gurgen, F.; Delil, S.; Apaydin, H.; Kursun, O.: Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J. Biomed. Health Inf. 17(4), 828–834 (2013)CrossRef
53.
Zurück zum Zitat Das, R.: A comparison of multiple classification methods for diagnosis of Parkinson disease. Expert Syst. Appl. 37(2), 1568–1572 (2010)CrossRef Das, R.: A comparison of multiple classification methods for diagnosis of Parkinson disease. Expert Syst. Appl. 37(2), 1568–1572 (2010)CrossRef
54.
Zurück zum Zitat Khemphila, A.; Boonjing, V.: Parkinsons disease classification using neural network and feature selection. World Academy of Science. Eng. Technol. 64, 15–18 (2012) Khemphila, A.; Boonjing, V.: Parkinsons disease classification using neural network and feature selection. World Academy of Science. Eng. Technol. 64, 15–18 (2012)
55.
Zurück zum Zitat Mazilu, S.; Hardegger, M.; Zhu, Z.; Roggen, D.; Tröster, G.; Plotnik, M.; Hausdorff, J. M.: Online detection of freezing of gait with smartphones and machine learning techniques. In: 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, pp. 123–130. IEEE (2012) Mazilu, S.; Hardegger, M.; Zhu, Z.; Roggen, D.; Tröster, G.; Plotnik, M.; Hausdorff, J. M.: Online detection of freezing of gait with smartphones and machine learning techniques. In: 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, pp. 123–130. IEEE (2012)
56.
Zurück zum Zitat Sriram, T.V.; Rao, M.V.; Narayana, G.S.; Kaladhar, D.S.V.G.K.; Vital, T.P.R.: Intelligent Parkinson disease prediction using machine learning algorithms. Int. J. Eng. Innov. Technol 3, 212–215 (2013) Sriram, T.V.; Rao, M.V.; Narayana, G.S.; Kaladhar, D.S.V.G.K.; Vital, T.P.R.: Intelligent Parkinson disease prediction using machine learning algorithms. Int. J. Eng. Innov. Technol 3, 212–215 (2013)
57.
Zurück zum Zitat Terlapu, P.V.; Dasari, S.; Gangu, V.K.: Parkinson’s disease voice diagnosis system (PDVDS) through PSO trained neural networks. Int. J. Sci. Technol. Res. 9(3), 3723–3734 (2020) Terlapu, P.V.; Dasari, S.; Gangu, V.K.: Parkinson’s disease voice diagnosis system (PDVDS) through PSO trained neural networks. Int. J. Sci. Technol. Res. 9(3), 3723–3734 (2020)
58.
Zurück zum Zitat Er, O.; Cetin, O.; Bascil, M.S.; Temurtas, F.: A comparative study on Parkinson’s disease diagnosis using neural networks and artificial immune system. J. Med. Imaging Health Inf. 6(1), 264–268 (2016)CrossRef Er, O.; Cetin, O.; Bascil, M.S.; Temurtas, F.: A comparative study on Parkinson’s disease diagnosis using neural networks and artificial immune system. J. Med. Imaging Health Inf. 6(1), 264–268 (2016)CrossRef
59.
Zurück zum Zitat Hirschauer, T.J.; Adeli, H.; Buford, J.A.: Computer-aided diagnosis of Parkinson’s disease using enhanced probabilistic neural network. J. Med. Syst. 39(11), 179 (2015)CrossRef Hirschauer, T.J.; Adeli, H.; Buford, J.A.: Computer-aided diagnosis of Parkinson’s disease using enhanced probabilistic neural network. J. Med. Syst. 39(11), 179 (2015)CrossRef
60.
Zurück zum Zitat Hariharan, M.; Polat, K.; Sindhu, R.: A new hybrid intelligent system for accurate detection of Parkinson’s disease. Comput. Methods Programs Biomed. 113(3), 904–913 (2014)CrossRef Hariharan, M.; Polat, K.; Sindhu, R.: A new hybrid intelligent system for accurate detection of Parkinson’s disease. Comput. Methods Programs Biomed. 113(3), 904–913 (2014)CrossRef
61.
Zurück zum Zitat Muniz, A.M.S.; Liu, H.; Lyons, K.E.; Pahwa, R.; Liu, W.; Nobre, F.F.; Nadal, J.: Comparison among probabilistic neural network, support vector machine and logistic regression for evaluating the effect of subthalamic stimulation in Parkinson disease on ground reaction force during gait. J. Biomech. 43(4), 720–726 (2010)CrossRef Muniz, A.M.S.; Liu, H.; Lyons, K.E.; Pahwa, R.; Liu, W.; Nobre, F.F.; Nadal, J.: Comparison among probabilistic neural network, support vector machine and logistic regression for evaluating the effect of subthalamic stimulation in Parkinson disease on ground reaction force during gait. J. Biomech. 43(4), 720–726 (2010)CrossRef
Metadaten
Titel
Probabilistic Neural Network-based Model for Identification of Parkinson’s Disease by using Voice Profile and Personal Data
verfasst von
T. Pandu Ranga Vital
Janmenjoy Nayak
Bighnaraj Naik
D. Jayaram
Publikationsdatum
03.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 4/2021
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-05080-7

Weitere Artikel der Ausgabe 4/2021

Arabian Journal for Science and Engineering 4/2021 Zur Ausgabe

Research Article-Computer Engineering and Computer Science

Optimal Design of Transmission Shafts Using a Vortex Search Algorithm

Research Article-Computer Engineering and Computer Science

A New Approach for Human Recognition Through Wearable Sensor Signals

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.