Skip to main content
Erschienen in: Journal of Intelligent Manufacturing 3/2023

28.09.2021

Probabilistic predictive control of porosity in laser powder bed fusion

verfasst von: Paromita Nath, Sankaran Mahadevan

Erschienen in: Journal of Intelligent Manufacturing | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work presents a Bayesian methodology for layer-by-layer predictive quality control of an additively manufactured part by integrating physics-based simulation with online monitoring data. The model and the sensor data are first used to infer porosity in the printed layers, prediction of porosity in future layers, and adjustment of process parameters. Since porosity is not directly observable during the printing process, the temperature profile obtained from the monitoring (using an infra-red thermal camera) is used to infer porosity in the finished part. The porosity inference model is constructed by first reducing the dimension of the thermal images by employing singular value decomposition. Next, in process control, the porosity in the final part is predicted, and if this predicted porosity is more than a desired threshold, the process parameters for printing the next layer are adjusted based on optimization. To ensure that the prediction model is both fast and accurate, the expensive finite element model is replaced by a surrogate model, and a discrepancy term calibrated using experimental data is used to correct the surrogate model prediction. The prediction model is also updated at every layer based on the monitoring data, and the updated model is used to predict the porosity in the final part. The effectiveness of the proposed method is demonstrated for controlling porosity in laser powder bed fusion by changing the process parameters such as laser power and laser speed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Guo, N., & Leu, M. C. (2013). Additive manufacturing: Technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3), 215–243.CrossRef Guo, N., & Leu, M. C. (2013). Additive manufacturing: Technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3), 215–243.CrossRef
Zurück zum Zitat Liverani, E., Toschi, S., Ceschini, L., & Fortunato, A. (2017). Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. Journal of Materials Processing Technology, 249, 255–263.CrossRef Liverani, E., Toschi, S., Ceschini, L., & Fortunato, A. (2017). Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. Journal of Materials Processing Technology, 249, 255–263.CrossRef
Zurück zum Zitat Kempen, K., Thijs, L., Van Humbeeck, J., & Kruth, J. P. (2015). Processing AlSi10Mg by selective laser melting: Parameter optimisation and material characterisation. Materials Science and Technology, 31(8), 917–923.CrossRef Kempen, K., Thijs, L., Van Humbeeck, J., & Kruth, J. P. (2015). Processing AlSi10Mg by selective laser melting: Parameter optimisation and material characterisation. Materials Science and Technology, 31(8), 917–923.CrossRef
Zurück zum Zitat de La Batut, B., Fergani, O., Brotan, V., Bambach, M., & El Mansouri, M. (2017). Analytical and numerical temperature prediction in direct metal deposition of Ti6Al4V. Journal of Manufacturing and Materials Processing, 1(1), 3.CrossRef de La Batut, B., Fergani, O., Brotan, V., Bambach, M., & El Mansouri, M. (2017). Analytical and numerical temperature prediction in direct metal deposition of Ti6Al4V. Journal of Manufacturing and Materials Processing, 1(1), 3.CrossRef
Zurück zum Zitat Laakso, P., Riipinen, T., Laukkanen, A., Andersson, T., Jokinen, A., Revuelta, A., & Ruusuvuori, K. (2016). Optimization and simulation of SLM process for high density H13 tool steel parts. Physics Procedia, 83, 26–35.CrossRef Laakso, P., Riipinen, T., Laukkanen, A., Andersson, T., Jokinen, A., Revuelta, A., & Ruusuvuori, K. (2016). Optimization and simulation of SLM process for high density H13 tool steel parts. Physics Procedia, 83, 26–35.CrossRef
Zurück zum Zitat Hu, Z., & Mahadevan, S. (2017). Uncertainty quantification and management in additive manufacturing: Current status, needs, and opportunities. The International Journal of Advanced Manufacturing Technology, 93(5–8), 2855–2874.CrossRef Hu, Z., & Mahadevan, S. (2017). Uncertainty quantification and management in additive manufacturing: Current status, needs, and opportunities. The International Journal of Advanced Manufacturing Technology, 93(5–8), 2855–2874.CrossRef
Zurück zum Zitat Nath, P., Hu, Z., & Mahadevan, S. (2019). Uncertainty quantification of grain morphology in laser direct metal deposition. Modelling and Simulation in Materials Science and Engineering, 27(4), 044003. Nath, P., Hu, Z., & Mahadevan, S. (2019). Uncertainty quantification of grain morphology in laser direct metal deposition. Modelling and Simulation in Materials Science and Engineering, 27(4), 044003.
Zurück zum Zitat Mahmoudi, M., Tapia, G., Karayagiz, K., Franco, B., Ma, J., Arroyave, R., Karaman, I., & Elwany, A. (2018). Multivariate calibration and experimental validation of a 3D finite element thermal model for laser powder bed fusion metal additive manufacturing. Integrating Materials and Manufacturing Innovation, 7(3), 116–135.CrossRef Mahmoudi, M., Tapia, G., Karayagiz, K., Franco, B., Ma, J., Arroyave, R., Karaman, I., & Elwany, A. (2018). Multivariate calibration and experimental validation of a 3D finite element thermal model for laser powder bed fusion metal additive manufacturing. Integrating Materials and Manufacturing Innovation, 7(3), 116–135.CrossRef
Zurück zum Zitat Nath, P., Olson, J. D., Mahadevan, S., & Lee, Y. T. T. (2020). Optimization of fused filament fabrication process parameters under uncertainty to maximize part geometry accuracy. Additive Manufacturing, 101331, Nath, P., Olson, J. D., Mahadevan, S., & Lee, Y. T. T. (2020). Optimization of fused filament fabrication process parameters under uncertainty to maximize part geometry accuracy. Additive Manufacturing, 101331,
Zurück zum Zitat Wang, Z., Liu, P., Xiao, Y., Cui, X., Hu, Z., & Chen, L. (2019). A data-driven approach for process optimization of metallic additive manufacturing under uncertainty. Journal of Manufacturing Science and Engineering, 141(8) Wang, Z., Liu, P., Xiao, Y., Cui, X., Hu, Z., & Chen, L. (2019). A data-driven approach for process optimization of metallic additive manufacturing under uncertainty. Journal of Manufacturing Science and Engineering, 141(8)
Zurück zum Zitat Megahed, M., Mindt, H. W., Willems, J., Dionne, P., Jacquemetton, L., Craig, J., Ranade, P., & Peralta, A. (2019). LPBF right the first time: The right mix between modeling and experiments. Integrating Materials and Manufacturing Innovation, 8(2), 194–216.CrossRef Megahed, M., Mindt, H. W., Willems, J., Dionne, P., Jacquemetton, L., Craig, J., Ranade, P., & Peralta, A. (2019). LPBF right the first time: The right mix between modeling and experiments. Integrating Materials and Manufacturing Innovation, 8(2), 194–216.CrossRef
Zurück zum Zitat Reutzel, E. W., & Nassar, A. R. (2015). A survey of sensing and control systems for machine and process monitoring of directed-energy, metal-based additive manufacturing. Rapid Prototyping Journal, 21(2), 159–167.CrossRef Reutzel, E. W., & Nassar, A. R. (2015). A survey of sensing and control systems for machine and process monitoring of directed-energy, metal-based additive manufacturing. Rapid Prototyping Journal, 21(2), 159–167.CrossRef
Zurück zum Zitat Kim, H., Lin, Y., & Tseng, T. L. B. (2018). A review on quality control in additive manufacturing. Rapid Prototyping Journal, 24(3), 645–669.CrossRef Kim, H., Lin, Y., & Tseng, T. L. B. (2018). A review on quality control in additive manufacturing. Rapid Prototyping Journal, 24(3), 645–669.CrossRef
Zurück zum Zitat Judalet, N., Kazakçi, A., Le Gouguec, E., & Balvay, A., et al. (2017). Performance monitoring and control for an additive manufacturing factory-a case study in the aerospace industry. In DS 87-5 Proceedings of the 21st International Conference on Engineering Design (ICED 17), vol 5: Design for X, Design to X, Vancouver, Canada, 21-25.08. 2017, pp. 249–258 Judalet, N., Kazakçi, A., Le Gouguec, E., & Balvay, A., et al. (2017). Performance monitoring and control for an additive manufacturing factory-a case study in the aerospace industry. In DS 87-5 Proceedings of the 21st International Conference on Engineering Design (ICED 17), vol 5: Design for X, Design to X, Vancouver, Canada, 21-25.08. 2017, pp. 249–258
Zurück zum Zitat Coogan, T. J., & Kazmer, D. O. (2019). In-line rheological monitoring of fused deposition modeling. Journal of Rheology, 63(1), 141–155.CrossRef Coogan, T. J., & Kazmer, D. O. (2019). In-line rheological monitoring of fused deposition modeling. Journal of Rheology, 63(1), 141–155.CrossRef
Zurück zum Zitat Mazzoleni, L., Demir, A. G., Caprio, L., Pacher, M., & Previtali, B. (2019). Real-time observation of melt pool in selective laser melting: Spatial, temporal and wavelength resolution criteria. IEEE Transactions on Instrumentation and Measurement. Mazzoleni, L., Demir, A. G., Caprio, L., Pacher, M., & Previtali, B. (2019). Real-time observation of melt pool in selective laser melting: Spatial, temporal and wavelength resolution criteria. IEEE Transactions on Instrumentation and Measurement.
Zurück zum Zitat Gaikwad, A., Imani, F., Rao, P., Yang, H., & Reutzel, E. (2019). Design rules and in-situ quality monitoring of thin-wall features made using laser powder bed fusion (Vol. 58745, p. V001T01A039). American Society of Mechanical Engineers. Gaikwad, A., Imani, F., Rao, P., Yang, H., & Reutzel, E. (2019). Design rules and in-situ quality monitoring of thin-wall features made using laser powder bed fusion (Vol. 58745, p. V001T01A039). American Society of Mechanical Engineers.
Zurück zum Zitat Song, L., Bagavath-Singh, V., Dutta, B., & Mazumder, J. (2012). Control of melt pool temperature and deposition height during direct metal deposition process. The International Journal of Advanced Manufacturing Technology, 58(1–4), 247–256.CrossRef Song, L., Bagavath-Singh, V., Dutta, B., & Mazumder, J. (2012). Control of melt pool temperature and deposition height during direct metal deposition process. The International Journal of Advanced Manufacturing Technology, 58(1–4), 247–256.CrossRef
Zurück zum Zitat Wang, Q., Li, J., Nassar, A. R., Reutzel, E. W., & Mitchell, W. (2018). Build height control in directed energy deposition using a model-based feed-forward controller. In: Dynamic Systems and Control Conference, vol. 51906, p. V002T23A003. American Society of Mechanical Engineers (2018) Wang, Q., Li, J., Nassar, A. R., Reutzel, E. W., & Mitchell, W. (2018). Build height control in directed energy deposition using a model-based feed-forward controller. In: Dynamic Systems and Control Conference, vol. 51906, p. V002T23A003. American Society of Mechanical Engineers (2018)
Zurück zum Zitat Lee, J., & Prabhu, V. (2016). Simulation modeling for optimal control of additive manufacturing processes. Additive Manufacturing, 12, 197–203.CrossRef Lee, J., & Prabhu, V. (2016). Simulation modeling for optimal control of additive manufacturing processes. Additive Manufacturing, 12, 197–203.CrossRef
Zurück zum Zitat Tang, M., Pistorius, P. C., & Beuth, J. L. (2017). Prediction of lack-of-fusion porosity for powder bed fusion. Additive Manufacturing, 14, 39–48.CrossRef Tang, M., Pistorius, P. C., & Beuth, J. L. (2017). Prediction of lack-of-fusion porosity for powder bed fusion. Additive Manufacturing, 14, 39–48.CrossRef
Zurück zum Zitat Vastola, G., Pei, Q., & Zhang, Y. W. (2018). Predictive model for porosity in powder-bed fusion additive manufacturing at high beam energy regime. Additive Manufacturing, 22, 817–822.CrossRef Vastola, G., Pei, Q., & Zhang, Y. W. (2018). Predictive model for porosity in powder-bed fusion additive manufacturing at high beam energy regime. Additive Manufacturing, 22, 817–822.CrossRef
Zurück zum Zitat Martin, A. A., Calta, N. P., Khairallah, S. A., Wang, J., Depond, P. J., Fong, A. Y., Thampy, V., Guss, G. M., Kiss, A. M., Stone, K. H., et al. (2019). Dynamics of pore formation during laser powder bed fusion additive manufacturing. Nature Communications, 10(1), 1987.CrossRef Martin, A. A., Calta, N. P., Khairallah, S. A., Wang, J., Depond, P. J., Fong, A. Y., Thampy, V., Guss, G. M., Kiss, A. M., Stone, K. H., et al. (2019). Dynamics of pore formation during laser powder bed fusion additive manufacturing. Nature Communications, 10(1), 1987.CrossRef
Zurück zum Zitat Bayat, M., Thanki, A., Mohanty, S., Witvrouw, A., Yang, S., Thorborg, J., Tiedje, N. S., & Hattel, J. H. (2019). Keyhole-induced porosities in laser-based powder bed fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation. Additive Manufacturing, 30, 100835. Bayat, M., Thanki, A., Mohanty, S., Witvrouw, A., Yang, S., Thorborg, J., Tiedje, N. S., & Hattel, J. H. (2019). Keyhole-induced porosities in laser-based powder bed fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation. Additive Manufacturing, 30, 100835.
Zurück zum Zitat Bayat, M., Mohanty, S., & Hattel, J. H. (2019). Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF. International Journal of Heat and Mass Transfer, 139, 95–114.CrossRef Bayat, M., Mohanty, S., & Hattel, J. H. (2019). Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF. International Journal of Heat and Mass Transfer, 139, 95–114.CrossRef
Zurück zum Zitat Bruna-Rosso, C., Demir, A. G., & Previtali, B. (2018). Selective laser melting finite element modeling: Validation with high-speed imaging and lack of fusion defects prediction. Materials & Design, 156, 143–153.CrossRef Bruna-Rosso, C., Demir, A. G., & Previtali, B. (2018). Selective laser melting finite element modeling: Validation with high-speed imaging and lack of fusion defects prediction. Materials & Design, 156, 143–153.CrossRef
Zurück zum Zitat Luo, Z., & Zhao, Y. (2018). A survey of finite element analysis of temperature and thermal stress fields in powder bed fusion additive manufacturing. Additive Manufacturing, 21, 318–332.CrossRef Luo, Z., & Zhao, Y. (2018). A survey of finite element analysis of temperature and thermal stress fields in powder bed fusion additive manufacturing. Additive Manufacturing, 21, 318–332.CrossRef
Zurück zum Zitat Reddy, J. N., & Gartling, D. K. (2010). The finite element method in heat transfer and fluid dynamics. CRC Press. Reddy, J. N., & Gartling, D. K. (2010). The finite element method in heat transfer and fluid dynamics. CRC Press.
Zurück zum Zitat Fu, C., & Guo, Y. (2014). 3-dimensional finite element modeling of selective laser melting Ti-6Al- 4V alloy. In 25th Annual international solid freeform fabrication symposium, pp. 774–784 (2014) Fu, C., & Guo, Y. (2014). 3-dimensional finite element modeling of selective laser melting Ti-6Al- 4V alloy. In 25th Annual international solid freeform fabrication symposium, pp. 774–784 (2014)
Zurück zum Zitat Hibbitt, K. (2001). Sorensen: ABAQUS/Standard User’s Manual (Vol. 1). Hibbitt: Karlsson & Sorensen. Hibbitt, K. (2001). Sorensen: ABAQUS/Standard User’s Manual (Vol. 1). Hibbitt: Karlsson & Sorensen.
Zurück zum Zitat Thijs, L., Verhaeghe, F., Craeghs, T., Van Humbeeck, J., & Kruth, J. P. (2010). A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Materialia, 58(9), 3303–3312.CrossRef Thijs, L., Verhaeghe, F., Craeghs, T., Van Humbeeck, J., & Kruth, J. P. (2010). A study of the microstructural evolution during selective laser melting of Ti–6Al–4V. Acta Materialia, 58(9), 3303–3312.CrossRef
Zurück zum Zitat Lophaven, S. N., Nielsen, H. B., & Søndergaard, J. (Citeseer (2002)). DACE: a Matlab Kriging toolbox, 2. Lophaven, S. N., Nielsen, H. B., & Søndergaard, J. (Citeseer (2002)). DACE: a Matlab Kriging toolbox, 2.
Zurück zum Zitat Kennedy, M. C., & O’Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(3), 425–464. Kennedy, M. C., & O’Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(3), 425–464.
Zurück zum Zitat Ling, Y., Mullins, J., & Mahadevan, S. (2014). Selection of model discrepancy priors in Bayesian calibration. Journal of Computational Physics, 276, 665–680.CrossRef Ling, Y., Mullins, J., & Mahadevan, S. (2014). Selection of model discrepancy priors in Bayesian calibration. Journal of Computational Physics, 276, 665–680.CrossRef
Zurück zum Zitat Gilks, W. R., et al. (2005). Markov chain Monte Carlo. encyclopedia of biostatistics. Advance Online Publication, doi:10(0470011815), b2a14021. Gilks, W. R., et al. (2005). Markov chain Monte Carlo. encyclopedia of biostatistics. Advance Online Publication, doi:10(0470011815), b2a14021.
Zurück zum Zitat Doucet, A., De Freitas, N., & Gordon, N. (2001). An introduction to sequential Monte Carlo methods. Sequential Monte Carlo methods in practice (pp. 3–14). Springer. Doucet, A., De Freitas, N., & Gordon, N. (2001). An introduction to sequential Monte Carlo methods. Sequential Monte Carlo methods in practice (pp. 3–14). Springer.
Zurück zum Zitat Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174–188.CrossRef Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174–188.CrossRef
Zurück zum Zitat Zaman, K., & Mahadevan, S. (2017). Reliability-based design optimization of multidisciplinary system under aleatory and epistemic uncertainty. Structural and Multidisciplinary Optimization, 55(2), 681–699.CrossRef Zaman, K., & Mahadevan, S. (2017). Reliability-based design optimization of multidisciplinary system under aleatory and epistemic uncertainty. Structural and Multidisciplinary Optimization, 55(2), 681–699.CrossRef
Zurück zum Zitat Zaman, K., McDonald, M., Mahadevan, S., & Green, L. (2011). Robustness-based design optimization under data uncertainty. Structural and Multidisciplinary Optimization, 44(2), 183–197.CrossRef Zaman, K., McDonald, M., Mahadevan, S., & Green, L. (2011). Robustness-based design optimization under data uncertainty. Structural and Multidisciplinary Optimization, 44(2), 183–197.CrossRef
Zurück zum Zitat Park, G. J., Lee, T. H., Lee, K. H., & Hwang, K. H. (2006). Robust design: An overview. AIAA Journal, 44(1), 181–191.CrossRef Park, G. J., Lee, T. H., Lee, K. H., & Hwang, K. H. (2006). Robust design: An overview. AIAA Journal, 44(1), 181–191.CrossRef
Zurück zum Zitat Aminzadeh, M., & Kurfess, T. R. (2019). Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images. Journal of Intelligent Manufacturing, 30(6), 2505–2523.CrossRef Aminzadeh, M., & Kurfess, T. R. (2019). Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images. Journal of Intelligent Manufacturing, 30(6), 2505–2523.CrossRef
Zurück zum Zitat Golub, G. H., & Reinsch, C. (1971). Singular value decomposition and least squares solutions. Linear Algebra (pp. 134–151). Springer. Golub, G. H., & Reinsch, C. (1971). Singular value decomposition and least squares solutions. Linear Algebra (pp. 134–151). Springer.
Zurück zum Zitat Chatterjee, A. (2000). An introduction to the proper orthogonal decomposition. Current Science, 808–817. Chatterjee, A. (2000). An introduction to the proper orthogonal decomposition. Current Science, 808–817.
Zurück zum Zitat Denlinger, E. R., Heigel, J. C., Michaleris, P., & Palmer, T. (2015). Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys. Journal of Materials Processing Technology, 215, 123–131.CrossRef Denlinger, E. R., Heigel, J. C., Michaleris, P., & Palmer, T. (2015). Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys. Journal of Materials Processing Technology, 215, 123–131.CrossRef
Zurück zum Zitat Kistler, N. A., Corbin, D. J., Nassar, A. R., Reutzel, E. W., & Beese, A. M. (2019). Effect of processing conditions on the microstructure, porosity, and mechanical properties of Ti–6Al–4V repair fabricated by directed energy deposition. Journal of Materials Processing Technology, 264, 172–181.CrossRef Kistler, N. A., Corbin, D. J., Nassar, A. R., Reutzel, E. W., & Beese, A. M. (2019). Effect of processing conditions on the microstructure, porosity, and mechanical properties of Ti–6Al–4V repair fabricated by directed energy deposition. Journal of Materials Processing Technology, 264, 172–181.CrossRef
Zurück zum Zitat Mohr, G., Altenburg, S. J., & Hilgenberg, K. (2020). Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion. Additive Manufacturing, 32, 101080. Mohr, G., Altenburg, S. J., & Hilgenberg, K. (2020). Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion. Additive Manufacturing, 32, 101080.
Zurück zum Zitat Gong, H., Rafi, K., Gu, H., Starr, T., & Stucker, B. (2014). Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Additive Manufacturing, 1, 87–98.CrossRef Gong, H., Rafi, K., Gu, H., Starr, T., & Stucker, B. (2014). Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Additive Manufacturing, 1, 87–98.CrossRef
Zurück zum Zitat Morankar, S., Mandal, M., Kourra, N., Williams, M. A., Mitra, R., & Srirangam, P. (2019). X-ray tomography study on porosity and particle size distribution in in situ Al-4.5 Cu-5TiB\(_2\) semisolid rolled composites. JOM, 71(11), 4050–4058.CrossRef Morankar, S., Mandal, M., Kourra, N., Williams, M. A., Mitra, R., & Srirangam, P. (2019). X-ray tomography study on porosity and particle size distribution in in situ Al-4.5 Cu-5TiB\(_2\) semisolid rolled composites. JOM, 71(11), 4050–4058.CrossRef
Zurück zum Zitat Kamath, A., Vargas-Hernández, R. A., Krems, R. V., Carrington, T., Jr., & Manzhos, S. (2018). Neural networks vs gaussian process regression for representing potential energy surfaces: A comparative study of fit quality and vibrational spectrum accuracy. The Journal of Chemical Physics, 148(24), 241702. Kamath, A., Vargas-Hernández, R. A., Krems, R. V., Carrington, T., Jr., & Manzhos, S. (2018). Neural networks vs gaussian process regression for representing potential energy surfaces: A comparative study of fit quality and vibrational spectrum accuracy. The Journal of Chemical Physics, 148(24), 241702.
Metadaten
Titel
Probabilistic predictive control of porosity in laser powder bed fusion
verfasst von
Paromita Nath
Sankaran Mahadevan
Publikationsdatum
28.09.2021
Verlag
Springer US
Erschienen in
Journal of Intelligent Manufacturing / Ausgabe 3/2023
Print ISSN: 0956-5515
Elektronische ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-021-01836-6

Weitere Artikel der Ausgabe 3/2023

Journal of Intelligent Manufacturing 3/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.