Skip to main content
Erschienen in: Journal of Material Cycles and Waste Management 6/2020

04.07.2020 | ORIGINAL ARTICLE

Production of valuable chemicals from oil palm biomass using hot-compressed water method

verfasst von: Ahmad T. Yuliansyah, Satoshi Kumagai, Tsuyoshi Hirajima, Keiko Sasaki

Erschienen in: Journal of Material Cycles and Waste Management | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Oil palm industry discharges a large amount of biomass waste which can be converted into energy and chemicals. Hence, several biomass conversion methods are available, such as fermentation, pyrolysis, and gasification. In this work, the hot-compressed water method was proposed to produce valuable chemicals from oil palm biomass (oil palm fiber, shell, and empty fruit bunches). Each material was individually treated in a batch autoclave reactor at 200–300 °C for 30 min. After separation, the total organic carbon of the liquid product was measured by a Shimadzu TOC-5000A instrument, while its composition was analyzed by HPLC and GC/MC apparatus. Experimental results showed that liquid product of oil palm wastes contains various chemicals such as glucose, xylose, 5-HMF, furfural, acetic acid, formic acid, phenol, catechol, and phenol 2,6-di-methoxy. This liquid product composition was strongly dependent on the temperature treatment. In general, sugar-derived compounds (glucose, xylose, 5-HMF, furfural, acetic acid, formic acid) were primarily found in lower temperature; meanwhile, lignin-derived compounds (phenol, catechol, and phenol 2,6-di-methoxy) were mainly obtained in higher temperature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tymchyshyn M, Xu CB (2010) Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds. Biores Technol 101(7):2483–2490CrossRef Tymchyshyn M, Xu CB (2010) Liquefaction of bio-mass in hot-compressed water for the production of phenolic compounds. Biores Technol 101(7):2483–2490CrossRef
2.
Zurück zum Zitat Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19(5):797–841CrossRef Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19(5):797–841CrossRef
3.
Zurück zum Zitat Iryani DA, Kumagai S, Nonaka M, Nagashima Y, Sasaki K, Hirajima T (2014) The hot compressed water treatment of solid waste material from the sugar industry for valuable chemical production. Int J Green Energy 11(6):577–588CrossRef Iryani DA, Kumagai S, Nonaka M, Nagashima Y, Sasaki K, Hirajima T (2014) The hot compressed water treatment of solid waste material from the sugar industry for valuable chemical production. Int J Green Energy 11(6):577–588CrossRef
4.
Zurück zum Zitat Yan X, Jin F, Tohji K, Enomoto H (2007) Production of acetic acid from carbohydrate biomass by two-step reaction with alkaline hydrothermal reaction and wet oxidation. Water Dyn 898:182–185 Yan X, Jin F, Tohji K, Enomoto H (2007) Production of acetic acid from carbohydrate biomass by two-step reaction with alkaline hydrothermal reaction and wet oxidation. Water Dyn 898:182–185
5.
Zurück zum Zitat Borden JR, Lee YY, Yoon HH (2000) Simultaneous saccharification and fermentation of cellulosic biomass to acetic acid. Appl Biochem Biotechnol 84–6:963–970CrossRef Borden JR, Lee YY, Yoon HH (2000) Simultaneous saccharification and fermentation of cellulosic biomass to acetic acid. Appl Biochem Biotechnol 84–6:963–970CrossRef
6.
Zurück zum Zitat Zhou Z, Jin F, Enomoto H, Moriya T, Higashigima H (2006) A continuous flow reaction system for producing acetic acid by wet oxidation of biomass waste. J Mater Sci 41(5):1501–1507CrossRef Zhou Z, Jin F, Enomoto H, Moriya T, Higashigima H (2006) A continuous flow reaction system for producing acetic acid by wet oxidation of biomass waste. J Mater Sci 41(5):1501–1507CrossRef
7.
Zurück zum Zitat Kong LZ, Li GM, Wang H, He WZ, Ling F (2008) Hydrothermal catalytic conversion of biomass for lactic acid production. J Chem Technol Biotechnol 83(3):383–388CrossRef Kong LZ, Li GM, Wang H, He WZ, Ling F (2008) Hydrothermal catalytic conversion of biomass for lactic acid production. J Chem Technol Biotechnol 83(3):383–388CrossRef
8.
Zurück zum Zitat Yan X, Jini F, Kishita A, Enomoto H, Tohji K (2008) Formation of lactic acid from cellulosic biomass by alkaline hydrothermal reaction. Water Dyn 987:50–53 Yan X, Jini F, Kishita A, Enomoto H, Tohji K (2008) Formation of lactic acid from cellulosic biomass by alkaline hydrothermal reaction. Water Dyn 987:50–53
9.
Zurück zum Zitat Sasaki C, Okumura R, Asakawa A, Asada C, Nakamura Y (2012) Effects of washing with water on enzymatic saccharification and d-lactic acid production from steam-exploded sugarcane bagasse. J Mater Cycles Waste Manage 14:234–240CrossRef Sasaki C, Okumura R, Asakawa A, Asada C, Nakamura Y (2012) Effects of washing with water on enzymatic saccharification and d-lactic acid production from steam-exploded sugarcane bagasse. J Mater Cycles Waste Manage 14:234–240CrossRef
10.
Zurück zum Zitat Faaij A, Larson E, Kreutz T, Hamelinck C (1999) Production of methanol and hydrogen from biomass via advanced conversion concepts. In: Biomass: a growth opportunity in green energy and value-added products, vols 1 and 2, pp 803–804 Faaij A, Larson E, Kreutz T, Hamelinck C (1999) Production of methanol and hydrogen from biomass via advanced conversion concepts. In: Biomass: a growth opportunity in green energy and value-added products, vols 1 and 2, pp 803–804
11.
Zurück zum Zitat Sethi P, Chaudhry S, Unnasch S (1999) Methanol production from biomass using the Hynol process. In: Biomass: a growth opportunity in green energy and value-added products, vols 1 and 2, pp 833–836 Sethi P, Chaudhry S, Unnasch S (1999) Methanol production from biomass using the Hynol process. In: Biomass: a growth opportunity in green energy and value-added products, vols 1 and 2, pp 833–836
12.
Zurück zum Zitat Gullu D, Demirbas A (2001) Biomass to methanol via pyrolysis process. Energy Convers Manage 42(11):1349–1356CrossRef Gullu D, Demirbas A (2001) Biomass to methanol via pyrolysis process. Energy Convers Manage 42(11):1349–1356CrossRef
13.
Zurück zum Zitat Asghari FS, Yoshida H (2010) Conversion of Japanese red pine wood (Pinus densiflora) into valuable chemicals under subcritical water conditions. Carbohyd Res 345(1):124–131CrossRef Asghari FS, Yoshida H (2010) Conversion of Japanese red pine wood (Pinus densiflora) into valuable chemicals under subcritical water conditions. Carbohyd Res 345(1):124–131CrossRef
14.
Zurück zum Zitat Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ, Lynd LR (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Biores Technol 81(1):33–44CrossRef Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ, Lynd LR (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Biores Technol 81(1):33–44CrossRef
15.
Zurück zum Zitat Takamizawa K, Ishikawa E, Nakamura K, Futamura T (2013) Bioethanol production from enzymatically saccharified lawn clippings from a golf course. J Mater Cycles Waste Manage 15:16–24CrossRef Takamizawa K, Ishikawa E, Nakamura K, Futamura T (2013) Bioethanol production from enzymatically saccharified lawn clippings from a golf course. J Mater Cycles Waste Manage 15:16–24CrossRef
16.
Zurück zum Zitat Karagoz S, Bhaskar T, Muto A, Sakata Y (2004) Effect of Rb and Cs carbonates for production of phenols from liquefaction of wood biomass. Fuel 83(17–18):2293–2299CrossRef Karagoz S, Bhaskar T, Muto A, Sakata Y (2004) Effect of Rb and Cs carbonates for production of phenols from liquefaction of wood biomass. Fuel 83(17–18):2293–2299CrossRef
17.
Zurück zum Zitat Singh R, Prakash A, Balagurumurthy B, Singh R, Saran S, Bhaskar T (2015) Hydrothermal liquefaction of agricultural and forest biomass residue: comparative study. J Mater Cycles Waste Manage 17:442–452CrossRef Singh R, Prakash A, Balagurumurthy B, Singh R, Saran S, Bhaskar T (2015) Hydrothermal liquefaction of agricultural and forest biomass residue: comparative study. J Mater Cycles Waste Manage 17:442–452CrossRef
18.
Zurück zum Zitat Kruse A, Dinjus E (2007) Hot compressed water as reaction medium and reactant—2. Degradation reactions. J Supercrit Fluids 41(3):361–379CrossRef Kruse A, Dinjus E (2007) Hot compressed water as reaction medium and reactant—2. Degradation reactions. J Supercrit Fluids 41(3):361–379CrossRef
19.
Zurück zum Zitat Yuliansyah AT, Hirajima T, Kumagai S, Sasaki K (2010) Production of solid biofuel from agricultural wastes of the palm oil industry by hydrothermal treatment. Waste Biomass Valoriz 1:395–405CrossRef Yuliansyah AT, Hirajima T, Kumagai S, Sasaki K (2010) Production of solid biofuel from agricultural wastes of the palm oil industry by hydrothermal treatment. Waste Biomass Valoriz 1:395–405CrossRef
20.
Zurück zum Zitat Yuliansyah AT, Kumagai S, Hirajima T, Sasaki K (2019) Hydrothermal treatment of oil palm biomass in batch and semi-flow reactors. Energy Procedia 158:675–680CrossRef Yuliansyah AT, Kumagai S, Hirajima T, Sasaki K (2019) Hydrothermal treatment of oil palm biomass in batch and semi-flow reactors. Energy Procedia 158:675–680CrossRef
21.
Zurück zum Zitat Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2005) Determination of structural carbohydrates and lignin in biomass. The US National Renewable Energy Laboratory Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2005) Determination of structural carbohydrates and lignin in biomass. The US National Renewable Energy Laboratory
22.
Zurück zum Zitat Antal MJ, Leesomboon T, Mok WS, Richards GN (1991) Kinetic-studies of the reactions of ketoses and aldoses in water at high-temperature.3. mechanism of formation of 2-furaldehyde from D-xylose. Carbohyd Res 217:71–85CrossRef Antal MJ, Leesomboon T, Mok WS, Richards GN (1991) Kinetic-studies of the reactions of ketoses and aldoses in water at high-temperature.3. mechanism of formation of 2-furaldehyde from D-xylose. Carbohyd Res 217:71–85CrossRef
23.
Zurück zum Zitat Srokol Z, Bouche A, Estrik A, Strik RCJ, Maschmeyer T, Peters J (2004) Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds. Carbohyd Res 339(10):1717–1726CrossRef Srokol Z, Bouche A, Estrik A, Strik RCJ, Maschmeyer T, Peters J (2004) Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds. Carbohyd Res 339(10):1717–1726CrossRef
24.
Zurück zum Zitat Minowa T, Fang Z, Ogi T, Varhegyi G (1998) Decomposition of cellulose and glucose in hot-compressed water under catalyst-free conditions. J Chem Eng Jpn 31(1):131–134CrossRef Minowa T, Fang Z, Ogi T, Varhegyi G (1998) Decomposition of cellulose and glucose in hot-compressed water under catalyst-free conditions. J Chem Eng Jpn 31(1):131–134CrossRef
Metadaten
Titel
Production of valuable chemicals from oil palm biomass using hot-compressed water method
verfasst von
Ahmad T. Yuliansyah
Satoshi Kumagai
Tsuyoshi Hirajima
Keiko Sasaki
Publikationsdatum
04.07.2020
Verlag
Springer Japan
Erschienen in
Journal of Material Cycles and Waste Management / Ausgabe 6/2020
Print ISSN: 1438-4957
Elektronische ISSN: 1611-8227
DOI
https://doi.org/10.1007/s10163-020-01073-8

Weitere Artikel der Ausgabe 6/2020

Journal of Material Cycles and Waste Management 6/2020 Zur Ausgabe