Skip to main content
Erschienen in: Journal of Iron and Steel Research International 6/2021

10.09.2020 | Original Paper

Properties change of activated coke for sintering flue gas purification in cyclic removal of SO2 and NOx

verfasst von: Sheng-li Wu, Wei-li Zhang, Zhong-jie Hu

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 6/2021

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The properties of activated coke (AC) for sintering flue gas purification greatly affect the efficiency of desulfurization and denitration, but they gradually change during cycles. The change in properties of coal-based AC during cycles was studied to clarify the change law and AC optimization index. The AC oxygen content rapidly increases from 13.49 to 17.87 wt.% in the early cycles to form phenol, which promotes the denitration rate from 55.63% to 78.20%. The denitration performance slowly increases in subsequent cycles because of the generation of quinone from AC slow oxidation. However, the oxygen-containing groups are not conducive to adsorption capacity of AC for NO. The adsorbed NO species which can be replaced by SO2 is the main NO species on AC, and its amount decreases with the decrease in C=C content of AC. The AC chemical loss leads to the opening of closed pores, expansion of original pores and formation of new pores, causing micropore volume to increase from 0.085% to 0.152%, compressive strength to decrease from 472 to 336 N, and abrasive resistance to decrease from 97.87% to 94.16% during cycles. The low oxygen content and high micropore volume are favorable to the initial desulfurization performance, and the former is more decisive. After a while, the desulfurization rate is linearly positively correlated with the micropore volume regardless of the chemistry. 4-h desulfurization rate increased from 69.03% to 85.91% during 25 cycles due to the increasing micropore volume. The AC properties change in cycles will greatly affect the desulfurization and denitration rate in the height direction of the flue gas purification system. Selecting the coal-based AC with moderate micropore volume, easy oxidation surface and less original oxygen-containing groups facilitates the better purification efficiency at lower cost for sintering plants.
Literatur
[2]
Zurück zum Zitat Y. Yu, T.Y. Zhu, X.L. Liu, Iron and Steel 54 (2019) No. 9, 1–11. Y. Yu, T.Y. Zhu, X.L. Liu, Iron and Steel 54 (2019) No. 9, 1–11.
[3]
Zurück zum Zitat W.L. Zhang, S.L. Wu, Z.J. Hu, J. Iron Steel Res. Int. 27 (2020) 887–897.CrossRef W.L. Zhang, S.L. Wu, Z.J. Hu, J. Iron Steel Res. Int. 27 (2020) 887–897.CrossRef
[4]
[5]
Zurück zum Zitat P. Wang, W. Xie, L.T. Li, Y.W. Xiong, J. China Coal Soc. 41 (2016) 751–759. P. Wang, W. Xie, L.T. Li, Y.W. Xiong, J. China Coal Soc. 41 (2016) 751–759.
[6]
Zurück zum Zitat T. Wu, Study of mechanism of combined removal of SO2 and NO from the flue gas by activated coke, China Coal Research Institute, Beijing, China, 2010. T. Wu, Study of mechanism of combined removal of SO2 and NO from the flue gas by activated coke, China Coal Research Institute, Beijing, China, 2010.
[8]
Zurück zum Zitat W.L. Zhang, S.L. Wu, Z.J. Hu, J. Iron Steel Res. 32 (2020) 281–288. W.L. Zhang, S.L. Wu, Z.J. Hu, J. Iron Steel Res. 32 (2020) 281–288.
[9]
Zurück zum Zitat Z. Ji, X. Fan, M. Gan, X. Chen, W. Lv, J. Yao, F. Cao, T. Jiang, ISIJ Int. 58 (2018) 1204–1209.CrossRef Z. Ji, X. Fan, M. Gan, X. Chen, W. Lv, J. Yao, F. Cao, T. Jiang, ISIJ Int. 58 (2018) 1204–1209.CrossRef
[10]
Zurück zum Zitat Z.Y. Ruan, Iron and Steel 52 (2017) No. 12, 91–97. Z.Y. Ruan, Iron and Steel 52 (2017) No. 12, 91–97.
[11]
Zurück zum Zitat Y. Sun, G. Zhang, Y. Xu, Y. Zhang, Y. Lv, R. Zhang, Fuel Process. Technol. 192 (2019) 1–12.CrossRef Y. Sun, G. Zhang, Y. Xu, Y. Zhang, Y. Lv, R. Zhang, Fuel Process. Technol. 192 (2019) 1–12.CrossRef
[12]
Zurück zum Zitat Y. Li, Y. Guo, T. Zhu, S. Ding, J. Environ. Sci. 43 (2016) 128–135.CrossRef Y. Li, Y. Guo, T. Zhu, S. Ding, J. Environ. Sci. 43 (2016) 128–135.CrossRef
[13]
Zurück zum Zitat J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Órfão, Carbon 37 (1999) 1379–1389.CrossRef J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Órfão, Carbon 37 (1999) 1379–1389.CrossRef
[14]
[15]
Zurück zum Zitat W. Wang, S. Xu, K. Wang, J. Liang, W. Zhang, Fuel Process. Technol. 189 (2019) 74–79.CrossRef W. Wang, S. Xu, K. Wang, J. Liang, W. Zhang, Fuel Process. Technol. 189 (2019) 74–79.CrossRef
[16]
Zurück zum Zitat N. Li, Surface modification of activated carbon using for adsorption denitrogenation from liquid hydrocarbon stream, China University of Petroleum, Qingdao, China, 2011. N. Li, Surface modification of activated carbon using for adsorption denitrogenation from liquid hydrocarbon stream, China University of Petroleum, Qingdao, China, 2011.
[17]
[18]
Zurück zum Zitat S. Liu, Fundamental research on removal of SO2 over activated carbon and metal doped carbon, Zhejiang University, Hangzhou, China, 2011. S. Liu, Fundamental research on removal of SO2 over activated carbon and metal doped carbon, Zhejiang University, Hangzhou, China, 2011.
[20]
Zurück zum Zitat U. Zielke, K.J. Hüttinger, W.P. Hoffman, Carbon 34 (1996) 983–998.CrossRef U. Zielke, K.J. Hüttinger, W.P. Hoffman, Carbon 34 (1996) 983–998.CrossRef
[21]
[22]
Zurück zum Zitat A. Boyano, M.E. Gálvez, R. Moliner, M.L. Lázaro, Fuel 87 (2008) 2058–2068.CrossRef A. Boyano, M.E. Gálvez, R. Moliner, M.L. Lázaro, Fuel 87 (2008) 2058–2068.CrossRef
[23]
Zurück zum Zitat K. Kante, E. Deliyanni, T.J. Bandosz, J. Hazard. Mater. 165 (2009) 704–713.CrossRef K. Kante, E. Deliyanni, T.J. Bandosz, J. Hazard. Mater. 165 (2009) 704–713.CrossRef
[24]
[25]
[26]
Zurück zum Zitat B. Marchon, J. Carrazza, H. Heinemann, G.A. Somorjai, Carbon 26 (1988) 507–514.CrossRef B. Marchon, J. Carrazza, H. Heinemann, G.A. Somorjai, Carbon 26 (1988) 507–514.CrossRef
[28]
Zurück zum Zitat W.J. Zhang, S. Rabiei, A. Bagreev, M.S. Zhuang, F. Rasouli, Appl. Catal. B Environ. 83 (2008) 63–71.CrossRef W.J. Zhang, S. Rabiei, A. Bagreev, M.S. Zhuang, F. Rasouli, Appl. Catal. B Environ. 83 (2008) 63–71.CrossRef
[29]
[30]
[31]
Zurück zum Zitat X. Gao, S. Liu, Y. Zhang, Z. Lou, M. Ni, K. Cen, Fuel Process. Technol. 92 (2011) 139–146.CrossRef X. Gao, S. Liu, Y. Zhang, Z. Lou, M. Ni, K. Cen, Fuel Process. Technol. 92 (2011) 139–146.CrossRef
[32]
Zurück zum Zitat R. Kleinschmidt, Mechanisms and kinetics of the catalytic conversion of NOx by ammonia to activated carbon under the conditions of combustion exhaust gas cleaning, University of Duisburg-Essen, Essen, Germany, 1988. R. Kleinschmidt, Mechanisms and kinetics of the catalytic conversion of NOx by ammonia to activated carbon under the conditions of combustion exhaust gas cleaning, University of Duisburg-Essen, Essen, Germany, 1988.
[33]
[34]
Zurück zum Zitat W. Xie, Y.W. Xiong, Z.C. Sun, D.M. Liang, L.T. Li, T. Wu, L.Y. Guo, Coal Sci. Technol. 40 (2012) No. 4, 125–128. W. Xie, Y.W. Xiong, Z.C. Sun, D.M. Liang, L.T. Li, T. Wu, L.Y. Guo, Coal Sci. Technol. 40 (2012) No. 4, 125–128.
[37]
Zurück zum Zitat J. Yuan, X. Jiang, M. Zou, L. Yao, C. Zhang, W. Jiang, Ind. Eng. Chem. Res. 57 (2018) 15731–15739.CrossRef J. Yuan, X. Jiang, M. Zou, L. Yao, C. Zhang, W. Jiang, Ind. Eng. Chem. Res. 57 (2018) 15731–15739.CrossRef
Metadaten
Titel
Properties change of activated coke for sintering flue gas purification in cyclic removal of SO2 and NOx
verfasst von
Sheng-li Wu
Wei-li Zhang
Zhong-jie Hu
Publikationsdatum
10.09.2020
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 6/2021
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00486-x

Weitere Artikel der Ausgabe 6/2021

Journal of Iron and Steel Research International 6/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.