Skip to main content
Erschienen in: Journal of Iron and Steel Research International 6/2021

15.04.2021 | Original Paper

Microstructure and mechanical properties of a Cr–Ni–W–Mo steel processed by thermo-mechanical controlled processing

verfasst von: Jia-xin Liang, Ying-chun Wang, Xing-wang Cheng, Zhuang Li, Jin-ke Du, Shu-kui Li

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 6/2021

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Experiments were conducted to evaluate the microstructure and tensile properties of a medium carbon Cr–Ni–W–Mo steel processed by thermo-mechanical controlled processing (TMCP) with cooling at different conditions in water, oil, air or lime followed by low tempering. Compared to normal heat-treatment processing, TMCP with water-cooling after deformation enhances the yield strength and tensile strength of the steel by ~ 323 MPa and ~ 251 MPa, respectively, due to higher dislocation strengthening and grain boundary strengthening. Meanwhile, it increases the elongation by ~ 1.76% attributed to the increase in volume percentage of the retained austenite and the refined laths of tempered martensite. Slowing the cooling rate after deformation during TMCP leads to a decrease in the strength. This results from the coupling effects by the reduction in dislocation density and volume fraction of tempered martensite together with the coarseness in martensite sizes. However, cooling rate decreasing has less influences on ductility because the improved elongation from the increase in the volume fractions of both retained austenite and lower bainite together with dislocation density decreasing is compensated by the reduced elongation from coarsened grains.
Literatur
[1]
Zurück zum Zitat X.Y. Chai, G. Chen, F. Chai, T. Pan, Z.G. Yang, C.F. Yang, J. Iron Steel Res. Int. 26 (2019) 1126–1136.CrossRef X.Y. Chai, G. Chen, F. Chai, T. Pan, Z.G. Yang, C.F. Yang, J. Iron Steel Res. Int. 26 (2019) 1126–1136.CrossRef
[2]
Zurück zum Zitat Y.F. Li, X. Cheng, D. Liu, H.M. Wang, Mater. Sci. Eng. A 713 (2018) 75–80.CrossRef Y.F. Li, X. Cheng, D. Liu, H.M. Wang, Mater. Sci. Eng. A 713 (2018) 75–80.CrossRef
[3]
Zurück zum Zitat C.X. Wang, Y.H. Gao, Y. Li, S. Han, S.Z. Liu, P.J. Zhang, J. Iron Steel Res. Int. 27 (2020) 710–718.CrossRef C.X. Wang, Y.H. Gao, Y. Li, S. Han, S.Z. Liu, P.J. Zhang, J. Iron Steel Res. Int. 27 (2020) 710–718.CrossRef
[4]
Zurück zum Zitat H.J. Kong, C. Xu, C.C. Bu, C. Da, J.H. Luan, Z.B. Jiao, G. Chen, C.T. Liu, Acta Mater. 172 (2019) 150–160.CrossRef H.J. Kong, C. Xu, C.C. Bu, C. Da, J.H. Luan, Z.B. Jiao, G. Chen, C.T. Liu, Acta Mater. 172 (2019) 150–160.CrossRef
[5]
Zurück zum Zitat S.L. Gibbons, R.A. Abrahams, M.W. Vaughan, R.E. Barber, R.C. Harris, R. Arroyave, I. Karaman, Mater. Sci. Eng. A 725 (2018) 57–64.CrossRef S.L. Gibbons, R.A. Abrahams, M.W. Vaughan, R.E. Barber, R.C. Harris, R. Arroyave, I. Karaman, Mater. Sci. Eng. A 725 (2018) 57–64.CrossRef
[6]
Zurück zum Zitat Y.Q. Tian, Z.Q. Cao, W. Li, H.B. Pan, X.P. Zheng, J.Y. Song, Y.L. Wei, L.S. Chen, J. Iron Steel Res. Int. 27 (2020) 208–216.CrossRef Y.Q. Tian, Z.Q. Cao, W. Li, H.B. Pan, X.P. Zheng, J.Y. Song, Y.L. Wei, L.S. Chen, J. Iron Steel Res. Int. 27 (2020) 208–216.CrossRef
[7]
Zurück zum Zitat X.J. Sun, Z.D. Li, Q.L. Yong, Z.G. Yang, H. Dong, Y.Q. Weng, Sci. China Technol. Sci. 55 (2012) 1797–1805.CrossRef X.J. Sun, Z.D. Li, Q.L. Yong, Z.G. Yang, H. Dong, Y.Q. Weng, Sci. China Technol. Sci. 55 (2012) 1797–1805.CrossRef
[8]
Zurück zum Zitat Y.J. Wei, Y.G. Li, L.C. Zhu, Y. Liu, X.Q. Lei, G. Wang, Y.X. Wu, Z.L. Mi, J.B. Liu, H.T. Wang, H.J. Gao, Nat. Commun. 5 (2014) 3580.CrossRef Y.J. Wei, Y.G. Li, L.C. Zhu, Y. Liu, X.Q. Lei, G. Wang, Y.X. Wu, Z.L. Mi, J.B. Liu, H.T. Wang, H.J. Gao, Nat. Commun. 5 (2014) 3580.CrossRef
[9]
[10]
Zurück zum Zitat M. Dalmore, J.D. Ruhlman, Eglin steel-a low alloy high strength composition, USA, 7537727B2, 2009. M. Dalmore, J.D. Ruhlman, Eglin steel-a low alloy high strength composition, USA, 7537727B2, 2009.
[11]
Zurück zum Zitat V. Tungala, A. Arora, B. Gwalani, R.S. Mishra, R.E. Brennan, K.C. Cho, Mater. Sci. Eng. A (2018) 105–114. V. Tungala, A. Arora, B. Gwalani, R.S. Mishra, R.E. Brennan, K.C. Cho, Mater. Sci. Eng. A (2018) 105–114.
[12]
Zurück zum Zitat R.P. John, M.F. Dilmore, H. Kevin, Development of Eglin Steel-A New, Ultrahigh-Strength Steel for Armament and Aerospace Applications, Materials Science & Technology Conference, Maney Publishing, England, UK, 2005, pp. 13–23. R.P. John, M.F. Dilmore, H. Kevin, Development of Eglin Steel-A New, Ultrahigh-Strength Steel for Armament and Aerospace Applications, Materials Science & Technology Conference, Maney Publishing, England, UK, 2005, pp. 13–23.
[13]
[14]
Zurück zum Zitat R. Kannan, Y.Y. Wang, M. Nouri, D.Y. Li, L.J. Li, Mater. Sci. Eng. A 713 (2018) 1–6.CrossRef R. Kannan, Y.Y. Wang, M. Nouri, D.Y. Li, L.J. Li, Mater. Sci. Eng. A 713 (2018) 1–6.CrossRef
[15]
Zurück zum Zitat M. Eskandari, A. Kermanpur, A. Najafizadeh, Mater. Lett. 63 (2009) 1442–1444.CrossRef M. Eskandari, A. Kermanpur, A. Najafizadeh, Mater. Lett. 63 (2009) 1442–1444.CrossRef
[16]
Zurück zum Zitat A. Rezaee, A. Kermanpur, A. Najafizadeh, M. Moallemi, Mater. Sci. Eng. A 528 (2011) 5025–5029.CrossRef A. Rezaee, A. Kermanpur, A. Najafizadeh, M. Moallemi, Mater. Sci. Eng. A 528 (2011) 5025–5029.CrossRef
[17]
Zurück zum Zitat R.L. Klueh, N. Hashimoto, P.J. Maziasz, J. Nucl. Mater. 367–370 (2007) 48–53.CrossRef R.L. Klueh, N. Hashimoto, P.J. Maziasz, J. Nucl. Mater. 367–370 (2007) 48–53.CrossRef
[18]
Zurück zum Zitat L.A. Dobrzański, W. Borek, Arch. Civ. Mech. Eng. 12 (2012) 299–304.CrossRef L.A. Dobrzański, W. Borek, Arch. Civ. Mech. Eng. 12 (2012) 299–304.CrossRef
[19]
Zurück zum Zitat S. Li, R. Zhu, I. Karaman, R. Arróyave, Acta Mater. 60 (2012) 6120–6130.CrossRef S. Li, R. Zhu, I. Karaman, R. Arróyave, Acta Mater. 60 (2012) 6120–6130.CrossRef
[20]
Zurück zum Zitat S. Li, R. Zhu, I. Karaman, R. Arróyave, Acta Mater. 61 (2013) 2884–2894.CrossRef S. Li, R. Zhu, I. Karaman, R. Arróyave, Acta Mater. 61 (2013) 2884–2894.CrossRef
[21]
Zurück zum Zitat R. Zhu, S. Li, I. Karaman, R. Arróyave, T. Niendorf, H.J. Maier, Acta Mater. 60 (2012) 3022–3033.CrossRef R. Zhu, S. Li, I. Karaman, R. Arróyave, T. Niendorf, H.J. Maier, Acta Mater. 60 (2012) 3022–3033.CrossRef
[22]
Zurück zum Zitat M. Shimojo, K. Takashima, Y. Higo, T. Inamura, H. Myeong, Metall. Mater. Trans. A 32 (2001) 261–265.CrossRef M. Shimojo, K. Takashima, Y. Higo, T. Inamura, H. Myeong, Metall. Mater. Trans. A 32 (2001) 261–265.CrossRef
[23]
Zurück zum Zitat V. Shrinivas, S.K. Varma, L.E. Murr, Metall. Mater. Trans. A 26 (1995) 661–671.CrossRef V. Shrinivas, S.K. Varma, L.E. Murr, Metall. Mater. Trans. A 26 (1995) 661–671.CrossRef
[24]
Zurück zum Zitat R.F. Hehemann, V.J. Luhan, A.R. Troiano, Trans. ASM 49 (1957) 409–426. R.F. Hehemann, V.J. Luhan, A.R. Troiano, Trans. ASM 49 (1957) 409–426.
[25]
[26]
[27]
[28]
Zurück zum Zitat Md. Basiruddin Sk, A.K. Khan, S. Lenka, B. Syed, J. Chakraborty, D. Chakrabarti, A. Deb, S. Chandra, S. Kundu, Mater. Des. 90 (2016) 1136–1150. Md. Basiruddin Sk, A.K. Khan, S. Lenka, B. Syed, J. Chakraborty, D. Chakrabarti, A. Deb, S. Chandra, S. Kundu, Mater. Des. 90 (2016) 1136–1150.
[29]
Zurück zum Zitat B. Wang, Z.Y. Liu, X.G. Zhou, G.D. Wang, R.D.K. Misra, Mater. Sci. Eng. A 588 (2013) 167–174.CrossRef B. Wang, Z.Y. Liu, X.G. Zhou, G.D. Wang, R.D.K. Misra, Mater. Sci. Eng. A 588 (2013) 167–174.CrossRef
[30]
Zurück zum Zitat S. Mandal, N.K. Tewary, S.K. Ghosh, D. Chakrabarti, S. Chatterjee, Mater. Sci. Eng. A 663 (2016) 126–140.CrossRef S. Mandal, N.K. Tewary, S.K. Ghosh, D. Chakrabarti, S. Chatterjee, Mater. Sci. Eng. A 663 (2016) 126–140.CrossRef
[31]
Zurück zum Zitat M. Ali, D. Porter, J. Kömi, M. Eissa, H. El Faramawy, T. Mattar, J. Iron Steel Res. Int. 26 (2019) 1350–1365.CrossRef M. Ali, D. Porter, J. Kömi, M. Eissa, H. El Faramawy, T. Mattar, J. Iron Steel Res. Int. 26 (2019) 1350–1365.CrossRef
[32]
Zurück zum Zitat J.L. Zhao, X.M. Zhao, X.Y. Zhao, C.Y. Dong, S.X. Kang, Mater. Sci. Eng. A 744 (2019) 86–93.CrossRef J.L. Zhao, X.M. Zhao, X.Y. Zhao, C.Y. Dong, S.X. Kang, Mater. Sci. Eng. A 744 (2019) 86–93.CrossRef
[33]
Zurück zum Zitat G. Niu, Q.B. Tang, H.S. Zuro, H.B. Wu, L.X. Xu, N. Gong, Mater. Sci. Eng. A 759 (2019) 1–10.CrossRef G. Niu, Q.B. Tang, H.S. Zuro, H.B. Wu, L.X. Xu, N. Gong, Mater. Sci. Eng. A 759 (2019) 1–10.CrossRef
[34]
[35]
Zurück zum Zitat X.Y. Long, J. Kang, B. Lv, F.C. Zhang, Mater. Des. 64 (2014) 237–245.CrossRef X.Y. Long, J. Kang, B. Lv, F.C. Zhang, Mater. Des. 64 (2014) 237–245.CrossRef
[36]
Zurück zum Zitat D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig, P.P. Choi, Acta Mater. 61 (2013) 6132–6152.CrossRef D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig, P.P. Choi, Acta Mater. 61 (2013) 6132–6152.CrossRef
[38]
Zurück zum Zitat S.J. Jia, B. Li, Q.Y. Liu, Y. Ren, S. Zhang, H. Gao, J. Iron Steel Res. Int. 27 (2020) 681–690.CrossRef S.J. Jia, B. Li, Q.Y. Liu, Y. Ren, S. Zhang, H. Gao, J. Iron Steel Res. Int. 27 (2020) 681–690.CrossRef
[39]
[40]
Zurück zum Zitat L.H. Qian, Q. Zhou, F.C. Zhang, J. Meng, M. Zhang, Y. Tian, Mater. Des. 39 (2012) 264–268.CrossRef L.H. Qian, Q. Zhou, F.C. Zhang, J. Meng, M. Zhang, Y. Tian, Mater. Des. 39 (2012) 264–268.CrossRef
Metadaten
Titel
Microstructure and mechanical properties of a Cr–Ni–W–Mo steel processed by thermo-mechanical controlled processing
verfasst von
Jia-xin Liang
Ying-chun Wang
Xing-wang Cheng
Zhuang Li
Jin-ke Du
Shu-kui Li
Publikationsdatum
15.04.2021
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 6/2021
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00530-w

Weitere Artikel der Ausgabe 6/2021

Journal of Iron and Steel Research International 6/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.