Skip to main content
Erschienen in: Journal of Computational Electronics 1/2017

24.01.2017

Quantum analysis based extraction of frequency dependent intrinsic and extrinsic parameters for GEWE-SiNW MOSFET

verfasst von: Neha Gupta, Rishu Chaujar

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper examines the bias-independent and bias-dependent extrinsic and intrinsic parameters of the gate electrode workfunction engineered (GEWE) silicon nanowire (SiNW) metal–oxide–semiconductor field-effect transistor (MOSFET) by considering quantum effects. The results reveal that the effect of extrinsic parameters such as the resistance, capacitance, and inductance of the electrodes is less pronounced in the GEWE-SiNW compared with the conventional SiNW or conventional MOSFET. The intrinsic transconductance of the GEWE-SiNW device can be further improved by tuning the gate metal workfunction difference, which results in shorter time constant and lower parasitic capacitance, making it suitable for radiofrequency integrated circuit (RFIC) design. It is also observed that, in the saturation region, the device exhibits improved transconductance and noticeable reduction in \(C_{\mathrm{sdx}}\) [due to drain-induced barrier lowering (DIBL)] but the parasitic capacitance and time constant also reduce. In addition, a non-quasi-static small-signal model has been studied in terms of Z and Y parameters; the results show good agreement with the results of three-dimensional (3D) simulations at thousands of GHz.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Deen, M.J., Fjeldly, T.A.: CMOS RF Modeling. Characterization and Applications. World Scientific, Singapore (2002) Deen, M.J., Fjeldly, T.A.: CMOS RF Modeling. Characterization and Applications. World Scientific, Singapore (2002)
2.
Zurück zum Zitat Wood, J., Lamey, D., Guyonnet, M., Chan, D., Bridges, D., Monsauret, N., Aaen, P.H.: An extrinsic component parameter extraction method for high power RF LDMOS transistors. In: IEEE MTT-S International Microwave Symposium Digest, pp. 607–610 (2008) Wood, J., Lamey, D., Guyonnet, M., Chan, D., Bridges, D., Monsauret, N., Aaen, P.H.: An extrinsic component parameter extraction method for high power RF LDMOS transistors. In: IEEE MTT-S International Microwave Symposium Digest, pp. 607–610 (2008)
3.
Zurück zum Zitat Ytterdal, T., Cheng, Y., Fjeldly, T.A.: Device Modeling for Analog and RF CMOS Circuit Design. Wiley, New York (2000) Ytterdal, T., Cheng, Y., Fjeldly, T.A.: Device Modeling for Analog and RF CMOS Circuit Design. Wiley, New York (2000)
4.
Zurück zum Zitat Cheng, Y., Deen, M.J., Chen, C.-H.: MOSFET modeling for RF IC design. IEEE Trans. Electron Devices 52(7), 1286–1303 (2005)CrossRef Cheng, Y., Deen, M.J., Chen, C.-H.: MOSFET modeling for RF IC design. IEEE Trans. Electron Devices 52(7), 1286–1303 (2005)CrossRef
5.
Zurück zum Zitat Woerlee, P.H., et al.: RF-CMOS performance trends. IEEE Trans. Electron Devices 48(8), 1776–1782 (2001)CrossRef Woerlee, P.H., et al.: RF-CMOS performance trends. IEEE Trans. Electron Devices 48(8), 1776–1782 (2001)CrossRef
6.
Zurück zum Zitat Alam, M.S., Armstrong, G.A.: Extraction of extrinsic series resistance in RF CMOS. In: NSTI-Nanotech, pp. 136–139 (2004) Alam, M.S., Armstrong, G.A.: Extraction of extrinsic series resistance in RF CMOS. In: NSTI-Nanotech, pp. 136–139 (2004)
7.
Zurück zum Zitat Buss, D.: Device issue in the integration of analog/RF functions in deep sub-micron digital CMOS. In: IEDM Technology Digest, pp. 423–426 (1999) Buss, D.: Device issue in the integration of analog/RF functions in deep sub-micron digital CMOS. In: IEDM Technology Digest, pp. 423–426 (1999)
8.
Zurück zum Zitat Kumar, A., Gupta, N., Chaujar, R.: Power gain assessment of ITO based transparent gate recessed channel (TGRC) MOSFET for RF/wireless applications. Superlattices Microstruct. 91, 290–301 (2016)CrossRef Kumar, A., Gupta, N., Chaujar, R.: Power gain assessment of ITO based transparent gate recessed channel (TGRC) MOSFET for RF/wireless applications. Superlattices Microstruct. 91, 290–301 (2016)CrossRef
9.
Zurück zum Zitat Kumar, A., Gupta, N., Chaujar, R.: TCAD RF performance investigation of transparent gate recessed channel MOSFET. Microelectron. J. 49, 36–42 (2016)CrossRef Kumar, A., Gupta, N., Chaujar, R.: TCAD RF performance investigation of transparent gate recessed channel MOSFET. Microelectron. J. 49, 36–42 (2016)CrossRef
10.
Zurück zum Zitat Subramanian, V., Abdelkarim, M., Bertrand, P., Morin, D., Guido, G., Willy, S., Stefaan, D.: Identifying the bottlenecks to the RF performance of FinFETs. In: IEEE 23rd International Conference on VLSI Design, pp. 111–116 (2010) Subramanian, V., Abdelkarim, M., Bertrand, P., Morin, D., Guido, G., Willy, S., Stefaan, D.: Identifying the bottlenecks to the RF performance of FinFETs. In: IEEE 23rd International Conference on VLSI Design, pp. 111–116 (2010)
11.
Zurück zum Zitat Cui, Y., Zhong, Z., Wang, D., Wang, W.U., Lieber, C.M.: High performance silicon nanowire field effect transistors. Nano Lett. 3(2), 149–152 (2003)CrossRef Cui, Y., Zhong, Z., Wang, D., Wang, W.U., Lieber, C.M.: High performance silicon nanowire field effect transistors. Nano Lett. 3(2), 149–152 (2003)CrossRef
12.
Zurück zum Zitat Chen, X., Tan, C.M.: Modeling and analysis of gate-all-around silicon nanowire FET. Microelectron. Reliab. 54(6–7), 1103–1108 (2014)CrossRef Chen, X., Tan, C.M.: Modeling and analysis of gate-all-around silicon nanowire FET. Microelectron. Reliab. 54(6–7), 1103–1108 (2014)CrossRef
13.
Zurück zum Zitat Iwai, H., et al.: Si nanowire FET and its modeling. Sci. China Inf. Sci. 54(5), 1004–1011 (2011)CrossRef Iwai, H., et al.: Si nanowire FET and its modeling. Sci. China Inf. Sci. 54(5), 1004–1011 (2011)CrossRef
14.
Zurück zum Zitat Wang, R., Zhuge, J., Huang, R., Tian, Y., Xiao, H., Zhang, L., Li, C., Zhang, X., Wang, Y.: Analog/RF performance of Si nanowire MOSFETs and the impact of process variation. IEEE Trans. Electron Devices 54(6), 1288–1294 (2007)CrossRef Wang, R., Zhuge, J., Huang, R., Tian, Y., Xiao, H., Zhang, L., Li, C., Zhang, X., Wang, Y.: Analog/RF performance of Si nanowire MOSFETs and the impact of process variation. IEEE Trans. Electron Devices 54(6), 1288–1294 (2007)CrossRef
15.
Zurück zum Zitat Cho, S., Kang, I.M., Kim, K.R.: Investigation of source-to-drain capacitance by DIBL effect of silicon nanowire MOSFETs. IEICE Electron. Express 7(19), 1499–1503 (2010)CrossRef Cho, S., Kang, I.M., Kim, K.R.: Investigation of source-to-drain capacitance by DIBL effect of silicon nanowire MOSFETs. IEICE Electron. Express 7(19), 1499–1503 (2010)CrossRef
16.
Zurück zum Zitat Cho, S., Kim, K.R., Park, B.G., Kang, I.M.: RF Performance and small-signal parameter extraction of junctionless silicon nanowire MOSFETs. IEEE Trans. Electron Devices 58(5), 1388–1396 (2011)CrossRef Cho, S., Kim, K.R., Park, B.G., Kang, I.M.: RF Performance and small-signal parameter extraction of junctionless silicon nanowire MOSFETs. IEEE Trans. Electron Devices 58(5), 1388–1396 (2011)CrossRef
17.
Zurück zum Zitat Long, W., Ou, H., Kuo, J.M., Chin, K.K.: Dual material gate (DMG) field effect transistor. IEEE Trans. Electron Devices 46(5), 865–870 (1999)CrossRef Long, W., Ou, H., Kuo, J.M., Chin, K.K.: Dual material gate (DMG) field effect transistor. IEEE Trans. Electron Devices 46(5), 865–870 (1999)CrossRef
18.
Zurück zum Zitat Gupta, N., Chaujar, R.: Implications of transport models on the analog performance of gate electrode workfunction engineered (GEWE) SiNW MOSFET. In: IEEE 2nd International Conference on Devices, Circuits and Systems, pp. 1–5 (2014) Gupta, N., Chaujar, R.: Implications of transport models on the analog performance of gate electrode workfunction engineered (GEWE) SiNW MOSFET. In: IEEE 2nd International Conference on Devices, Circuits and Systems, pp. 1–5 (2014)
19.
Zurück zum Zitat Gupta, N., Kumar, A., Chaujar, R.: Oxide bound impact on hot-carrier degradation for gate electrode workfunction engineered (GEWE) silicon nanowire MOSFET. Microsyst. Technol. 22(11), 2655–2664 (2015)CrossRef Gupta, N., Kumar, A., Chaujar, R.: Oxide bound impact on hot-carrier degradation for gate electrode workfunction engineered (GEWE) silicon nanowire MOSFET. Microsyst. Technol. 22(11), 2655–2664 (2015)CrossRef
20.
Zurück zum Zitat Gupta, N., Kumar, A., Chaujar, R.: Impact of device parameter variation on RF performance of gate electrode workfunction engineered (GEWE)-silicon nanowire (SiNW) MOSFET. J. Comput. Electron. 14(3), 798–810 (2015)CrossRef Gupta, N., Kumar, A., Chaujar, R.: Impact of device parameter variation on RF performance of gate electrode workfunction engineered (GEWE)-silicon nanowire (SiNW) MOSFET. J. Comput. Electron. 14(3), 798–810 (2015)CrossRef
21.
Zurück zum Zitat Gupta, N., Kumar, A., Chaujar, R.: TCAD analysis of frequency dependent intrinsic and extrinsic parameters of GEWE-SiNW MOSFET. In: Nanoelectronics, Materials & Devices, pp. 185–188 (2015) Gupta, N., Kumar, A., Chaujar, R.: TCAD analysis of frequency dependent intrinsic and extrinsic parameters of GEWE-SiNW MOSFET. In: Nanoelectronics, Materials & Devices, pp. 185–188 (2015)
22.
Zurück zum Zitat Hu, C.: Modern Semiconductor Device for Integrated Circuit, pp. 261–274. Prentice Hall, Englewood Cliffs (2009) Hu, C.: Modern Semiconductor Device for Integrated Circuit, pp. 261–274. Prentice Hall, Englewood Cliffs (2009)
23.
Zurück zum Zitat ATLAS User’s Manual: SILVACO Int. Santa Clara, CA (2014) ATLAS User’s Manual: SILVACO Int. Santa Clara, CA (2014)
24.
Zurück zum Zitat Gupta, N., Chaujar, R.: Influence of gate metal engineering on small-signal and noise behaviour of silicon nanowire MOSFET for low-noise amplifiers. Appl. Phys. A 122(8), 1–9 (2016) Gupta, N., Chaujar, R.: Influence of gate metal engineering on small-signal and noise behaviour of silicon nanowire MOSFET for low-noise amplifiers. Appl. Phys. A 122(8), 1–9 (2016)
25.
Zurück zum Zitat Iannaccone, G., Curatola, G., Fiori, G.: Effective Bohm Quantum potential for device simulators based on drift-diffusion and energy transport. In: Simulation of semiconductor processes and devices (SISPAD), pp. 275–278 (2004) Iannaccone, G., Curatola, G., Fiori, G.: Effective Bohm Quantum potential for device simulators based on drift-diffusion and energy transport. In: Simulation of semiconductor processes and devices (SISPAD), pp. 275–278 (2004)
26.
Zurück zum Zitat Suk, S.D., et al.: High performance 5 nm radius twin silicon nanowire MOSFET (TSNWFET): fabrication on bulk Si wafer, characteristics, and reliability. In: IEEE IEDM Technology Digest, pp. 717–720 (2005) Suk, S.D., et al.: High performance 5 nm radius twin silicon nanowire MOSFET (TSNWFET): fabrication on bulk Si wafer, characteristics, and reliability. In: IEEE IEDM Technology Digest, pp. 717–720 (2005)
27.
Zurück zum Zitat Yang, B., Buddharaju, K.D., Teo, S.H.G., Singh, N., Lo, G.Q., Kwong, D.L.: Vertical silicon-nanowire formation and gate-all-around MOSFET. IEEE Electron Device Lett. 29(7), 791–794 (2008)CrossRef Yang, B., Buddharaju, K.D., Teo, S.H.G., Singh, N., Lo, G.Q., Kwong, D.L.: Vertical silicon-nanowire formation and gate-all-around MOSFET. IEEE Electron Device Lett. 29(7), 791–794 (2008)CrossRef
28.
Zurück zum Zitat Rustagi, S.C., et al.: CMOS Inverter based on gate-all-around silicon-nanowire MOSFETs fabricated using top-down approach. IEEE Electron Device Lett. 28(11), 1021–1024 (2007)CrossRef Rustagi, S.C., et al.: CMOS Inverter based on gate-all-around silicon-nanowire MOSFETs fabricated using top-down approach. IEEE Electron Device Lett. 28(11), 1021–1024 (2007)CrossRef
29.
Zurück zum Zitat Polishchuk, I., Ranade, P., King, T.J., Hu, C.: Dual work function metal gate CMOS technology using metal interdiffusion. IEEE Electron Device Lett. 22(9), 444–446 (2001)CrossRef Polishchuk, I., Ranade, P., King, T.J., Hu, C.: Dual work function metal gate CMOS technology using metal interdiffusion. IEEE Electron Device Lett. 22(9), 444–446 (2001)CrossRef
30.
Zurück zum Zitat Liu, J., Wen, H.C., Lu, J.P., Kwong, D.L.: Dual-work-function metal gates by full silicidation of Poly-Si with Co-Ni bi-layers. IEEE Electron Device Lett. 26(4), 228–230 (2005)CrossRef Liu, J., Wen, H.C., Lu, J.P., Kwong, D.L.: Dual-work-function metal gates by full silicidation of Poly-Si with Co-Ni bi-layers. IEEE Electron Device Lett. 26(4), 228–230 (2005)CrossRef
31.
Zurück zum Zitat Na, K.Y., Kim, Y.S.: Silicon complementary metal-oxide semiconductor field-effect transistors with dual work function gate. Jpn. J. Appl. Phys. 45(12), 9033–9036 (2006)CrossRef Na, K.Y., Kim, Y.S.: Silicon complementary metal-oxide semiconductor field-effect transistors with dual work function gate. Jpn. J. Appl. Phys. 45(12), 9033–9036 (2006)CrossRef
32.
Zurück zum Zitat Shirak, O., Shtempluck, O., Kotchtakov, V., Bahir, G., Yaish, Y.E.: High performance horizontal gate-all-around silicon nanowire field-effect transistors. Nanotechnology 23, 395202 (2012)CrossRef Shirak, O., Shtempluck, O., Kotchtakov, V., Bahir, G., Yaish, Y.E.: High performance horizontal gate-all-around silicon nanowire field-effect transistors. Nanotechnology 23, 395202 (2012)CrossRef
33.
Zurück zum Zitat Moon, D., Choi, S.-J., Duarte, J.P., Choi, Y.-K.: Investigation of silicon nanowire gate-all-around junctionless transistors built on a bulk substrate. IEEE Trans. Electron Devices 60, 1355–1360 (2013)CrossRef Moon, D., Choi, S.-J., Duarte, J.P., Choi, Y.-K.: Investigation of silicon nanowire gate-all-around junctionless transistors built on a bulk substrate. IEEE Trans. Electron Devices 60, 1355–1360 (2013)CrossRef
34.
Zurück zum Zitat Lee, J.-H., Kim, B.-S., Choi, S.-H., Jang, Y., Hwangc, S.W., Whang, D.: A facile route to Si nanowire gate-all-around field effect transistors with a steep subthreshold slope. Nanoscale 5, 8968–8972 (2013)CrossRef Lee, J.-H., Kim, B.-S., Choi, S.-H., Jang, Y., Hwangc, S.W., Whang, D.: A facile route to Si nanowire gate-all-around field effect transistors with a steep subthreshold slope. Nanoscale 5, 8968–8972 (2013)CrossRef
35.
Zurück zum Zitat Iwai, H.: Roadmap for 22 nm and beyond. Microelectron. Eng. 86(7), 1520–1528 (2009)CrossRef Iwai, H.: Roadmap for 22 nm and beyond. Microelectron. Eng. 86(7), 1520–1528 (2009)CrossRef
36.
Zurück zum Zitat Raghavan, A., Srirattana, N., Laskar, J.: Modelling and Design Techniques for RF Power Amplifiers. Wiley, New York (2007)CrossRef Raghavan, A., Srirattana, N., Laskar, J.: Modelling and Design Techniques for RF Power Amplifiers. Wiley, New York (2007)CrossRef
37.
Zurück zum Zitat Lovelace, D., Costa, J., Camilleri, N.: Extracting small- signal model parameters of silicon MOSFET transistors. In: Proceedings IEEE MTT-S, pp. 865–868 (1994) Lovelace, D., Costa, J., Camilleri, N.: Extracting small- signal model parameters of silicon MOSFET transistors. In: Proceedings IEEE MTT-S, pp. 865–868 (1994)
38.
Zurück zum Zitat Tsividis, Y.: Operation and Modeling of the MOS Transistor, 2nd edn. Oxford Universiy Press, New York (2010) Tsividis, Y.: Operation and Modeling of the MOS Transistor, 2nd edn. Oxford Universiy Press, New York (2010)
39.
Zurück zum Zitat Malik, P., Gupta, R.S., Chaujar, R., Gupta, M.: AC analysis of nanoscale GME-TRC MOSFET for microwave and RF applications. Microelectron. Reliab. 52(1), 151–158 (2012)CrossRef Malik, P., Gupta, R.S., Chaujar, R., Gupta, M.: AC analysis of nanoscale GME-TRC MOSFET for microwave and RF applications. Microelectron. Reliab. 52(1), 151–158 (2012)CrossRef
40.
Zurück zum Zitat Razavi, B., Yan, R.H., Lee, K.F.: Impact of distributed gate resistance on the performance of MOS devices. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 41(11), 750–754 (1994) Razavi, B., Yan, R.H., Lee, K.F.: Impact of distributed gate resistance on the performance of MOS devices. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 41(11), 750–754 (1994)
41.
Zurück zum Zitat Je, M., Shin, H.: Accurate four-terminal RF MOSFET model accounting for the short-channel effect in the source to drain capacitance. In: Simulation of Semiconductor Processes and Devices (SISPAD), pp. 247–250 (2003) Je, M., Shin, H.: Accurate four-terminal RF MOSFET model accounting for the short-channel effect in the source to drain capacitance. In: Simulation of Semiconductor Processes and Devices (SISPAD), pp. 247–250 (2003)
Metadaten
Titel
Quantum analysis based extraction of frequency dependent intrinsic and extrinsic parameters for GEWE-SiNW MOSFET
verfasst von
Neha Gupta
Rishu Chaujar
Publikationsdatum
24.01.2017
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2017
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0949-4

Weitere Artikel der Ausgabe 1/2017

Journal of Computational Electronics 1/2017 Zur Ausgabe

Neuer Inhalt