Skip to main content
Erschienen in: Quantum Information Processing 7/2018

01.07.2018

Quantum conference

verfasst von: Anindita Banerjee, Kishore Thapliyal, Chitra Shukla, Anirban Pathak

Erschienen in: Quantum Information Processing | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A notion of quantum conference is introduced in analogy with the usual notion of a conference that happens frequently in today’s world. Quantum conference is defined as a multiparty secure communication task that allows each party to communicate their message simultaneously to all other parties in a secure manner using quantum resources. Two efficient and secure protocols for quantum conference have been proposed. The security and efficiency of the proposed protocols have been analyzed critically. It is shown that the proposed protocols can be realized using a large number of entangled states and group of operators. Further, it is shown that the proposed schemes can be easily reduced to a protocol for multiparty quantum key distribution and some earlier proposed schemes of quantum conference, where the notion of quantum conference was different.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
It may be noted that in an ideal scheme of QD, information encoded by two parties exist simultaneously in a channel, but in the protocol for quantum conversation introduced in [20], it was not the case. However, the communication task at hand was equivalent.
 
2
To send a string of qubits in secure manner to a distant party, the sender inserts an equal number of qubits as verification qubits. These checking qubits, known as decoy qubits, are prepared randomly in X basis or Z basis. Subsequently, both the sender and receiver compute the error rate on the decoy qubits in analogy of the BB84 protocol which helps them to conclude the secure transmission of the message qubits if the error rate is below the threshold limit.
 
Literatur
1.
Zurück zum Zitat Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)
2.
Zurück zum Zitat Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, Santa Fe. IEEE Computer Society Press (1994) Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science, Santa Fe. IEEE Computer Society Press (1994)
3.
Zurück zum Zitat Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)MathSciNetCrossRefMATH Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120–126 (1978)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)CrossRefADS Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)CrossRefADS
9.
Zurück zum Zitat Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)CrossRefADS Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)CrossRefADS
10.
Zurück zum Zitat Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)CrossRefADS Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)CrossRefADS
11.
Zurück zum Zitat Shukla, C., Banerjee, A., Pathak, A.: Improved protocols of secure quantum communication using W states. Int. J. Theor. Phys. 52, 1914 (2013)MathSciNetCrossRef Shukla, C., Banerjee, A., Pathak, A.: Improved protocols of secure quantum communication using W states. Int. J. Theor. Phys. 52, 1914 (2013)MathSciNetCrossRef
12.
Zurück zum Zitat Long, G-l, Deng, F-g, Wang, C., Li, X-h, Wen, K., Wang, W-y: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251 (2007)CrossRefADS Long, G-l, Deng, F-g, Wang, C., Li, X-h, Wen, K., Wang, W-y: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251 (2007)CrossRefADS
13.
Zurück zum Zitat Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944 (2012)CrossRefADS Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944 (2012)CrossRefADS
14.
Zurück zum Zitat Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches. Quantum Inf. Process. 14, 2195 (2015)MathSciNetCrossRefMATHADS Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches. Quantum Inf. Process. 14, 2195 (2015)MathSciNetCrossRefMATHADS
15.
Zurück zum Zitat Yan, F.L., Zhang, X.: A scheme for secure direct communication using EPR pairs and teleportation. Euro. Phys. J. B 41, 75 (2004)CrossRefADS Yan, F.L., Zhang, X.: A scheme for secure direct communication using EPR pairs and teleportation. Euro. Phys. J. B 41, 75 (2004)CrossRefADS
16.
Zurück zum Zitat Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)CrossRefADS Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)CrossRefADS
17.
Zurück zum Zitat Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)MATH Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)MATH
19.
Zurück zum Zitat Wen, X., Liu, Y., Zhou, N.: Secure quantum telephone. Opt. Commun. 275, 278 (2007)CrossRefADS Wen, X., Liu, Y., Zhou, N.: Secure quantum telephone. Opt. Commun. 275, 278 (2007)CrossRefADS
20.
Zurück zum Zitat Jain, S., Muralidharan, S., Panigrahi, P.K.: Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states. Eur. Phys. Lett. 87, 60008 (2009)CrossRefADS Jain, S., Muralidharan, S., Panigrahi, P.K.: Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states. Eur. Phys. Lett. 87, 60008 (2009)CrossRefADS
21.
Zurück zum Zitat Wang, H., Zhang, Y.Q., Liu, X.F., Hu, Y.P.: Efficient quantum dialogue using entangled states and entanglement swapping without information leakage. Quantum Inf. Process. 15, 2593 (2016)MathSciNetCrossRefMATHADS Wang, H., Zhang, Y.Q., Liu, X.F., Hu, Y.P.: Efficient quantum dialogue using entangled states and entanglement swapping without information leakage. Quantum Inf. Process. 15, 2593 (2016)MathSciNetCrossRefMATHADS
24.
Zurück zum Zitat Chang, C.H., Yang, C.W., Hzu, G.R., Hwang, T., Kao, S.H.: Quantum dialogue protocols over collective noise using entanglement of GHZ state. Quantum Inf. Process. 15, 2971–2991 (2016)MathSciNetCrossRefMATHADS Chang, C.H., Yang, C.W., Hzu, G.R., Hwang, T., Kao, S.H.: Quantum dialogue protocols over collective noise using entanglement of GHZ state. Quantum Inf. Process. 15, 2971–2991 (2016)MathSciNetCrossRefMATHADS
27.
Zurück zum Zitat Thapliyal, K., Sharma, R.D., Pathak, A.: Protocols for quantum binary voting. Int. J. Theor. Phys. 15, 1750007 (2016)MATH Thapliyal, K., Sharma, R.D., Pathak, A.: Protocols for quantum binary voting. Int. J. Theor. Phys. 15, 1750007 (2016)MATH
28.
Zurück zum Zitat Liu, W.J., Wang, H.B., et al.: Multiparty quantum sealed-bid auction using single photons as message carrier. Quantum Inf. Process. 15, 869–879 (2016)MathSciNetCrossRefMATHADS Liu, W.J., Wang, H.B., et al.: Multiparty quantum sealed-bid auction using single photons as message carrier. Quantum Inf. Process. 15, 869–879 (2016)MathSciNetCrossRefMATHADS
29.
Zurück zum Zitat Sharma, R.D., Thapliyal, K., Pathak, A.: Quantum sealed-bid auction using a modified scheme for multiparty circular quantum key agreement. Quantum Inf. Process. 16, 169 (2017)CrossRefMATHADS Sharma, R.D., Thapliyal, K., Pathak, A.: Quantum sealed-bid auction using a modified scheme for multiparty circular quantum key agreement. Quantum Inf. Process. 16, 169 (2017)CrossRefMATHADS
30.
Zurück zum Zitat Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)MathSciNetCrossRefMATHADS Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)MathSciNetCrossRefMATHADS
31.
Zurück zum Zitat Huang, W., Yang, Y.-H., Jia, H.-Y.: Cryptanalysis and improvement of a quantum communication-based online shopping mechanism. Quantum Inf. Process. 14, 2211–2225 (2015)CrossRefMATHADS Huang, W., Yang, Y.-H., Jia, H.-Y.: Cryptanalysis and improvement of a quantum communication-based online shopping mechanism. Quantum Inf. Process. 14, 2211–2225 (2015)CrossRefMATHADS
32.
Zurück zum Zitat Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391 (2014)MathSciNetCrossRefMATHADS Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391 (2014)MathSciNetCrossRefMATHADS
33.
Zurück zum Zitat Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822 (1998)CrossRefADS Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822 (1998)CrossRefADS
34.
Zurück zum Zitat Chen, K., Lo, H.-W.: Multi-partite quantum cryptographic protocols with noisy GHZ states. Quantum Inf. Comput. 7, 689–715 (2007)MathSciNetMATH Chen, K., Lo, H.-W.: Multi-partite quantum cryptographic protocols with noisy GHZ states. Quantum Inf. Comput. 7, 689–715 (2007)MathSciNetMATH
35.
Zurück zum Zitat Li, X.H., Li, C.Y., Deng, F.G., Liang, Y.J., Zhou, P., Zhou, H.Y.: Multiparty quantum remote secret conference. Chin. Phys. Lett. 24, 23–26 (2007)CrossRefADS Li, X.H., Li, C.Y., Deng, F.G., Liang, Y.J., Zhou, P., Zhou, H.Y.: Multiparty quantum remote secret conference. Chin. Phys. Lett. 24, 23–26 (2007)CrossRefADS
36.
Zurück zum Zitat Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Liang, Y.J., Zhou, H.Y.: Multiparty Quantum Secret Report. Chin. Phys. Lett. 23, 1676–1679 (2006)CrossRefADS Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Liang, Y.J., Zhou, H.Y.: Multiparty Quantum Secret Report. Chin. Phys. Lett. 23, 1676–1679 (2006)CrossRefADS
37.
Zurück zum Zitat Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518 (2013)MathSciNetCrossRefADS Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518 (2013)MathSciNetCrossRefADS
38.
Zurück zum Zitat Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16, 49 (2017)MathSciNetCrossRefMATHADS Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16, 49 (2017)MathSciNetCrossRefMATHADS
40.
Zurück zum Zitat Pirandola, S., Braunstein, S.L.: Physics: unite to build a quantum Internet. Nature 532, 169–171 (2016)CrossRefADS Pirandola, S., Braunstein, S.L.: Physics: unite to build a quantum Internet. Nature 532, 169–171 (2016)CrossRefADS
41.
Zurück zum Zitat Smania, M., Elhassan, A.M., Tavakoli, A., Bourennane, M.: Experimental quantum multiparty communication protocols. NPJ Quantum Inf. 2, 16010 (2016)CrossRefADS Smania, M., Elhassan, A.M., Tavakoli, A., Bourennane, M.: Experimental quantum multiparty communication protocols. NPJ Quantum Inf. 2, 16010 (2016)CrossRefADS
42.
Zurück zum Zitat Li, X.H., Deng, F.G., Zhou, H.Y.: Faithful qubit transmission against collective noise without ancillary qubits. Appl. Phys. Lett. 91, 144101 (2007)CrossRefADS Li, X.H., Deng, F.G., Zhou, H.Y.: Faithful qubit transmission against collective noise without ancillary qubits. Appl. Phys. Lett. 91, 144101 (2007)CrossRefADS
43.
Zurück zum Zitat Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)CrossRefADS Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)CrossRefADS
44.
Zurück zum Zitat Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)CrossRefADS Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)CrossRefADS
45.
Zurück zum Zitat Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)CrossRefADS Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)CrossRefADS
46.
Zurück zum Zitat Pan, J.W., Simon, C., Zellinger, A.: Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001)CrossRefADS Pan, J.W., Simon, C., Zellinger, A.: Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001)CrossRefADS
47.
Zurück zum Zitat Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Żukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)CrossRefADS Pan, J.W., Chen, Z.B., Lu, C.Y., Weinfurter, H., Zeilinger, A., Żukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)CrossRefADS
48.
Zurück zum Zitat Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599–2616 (2015)MathSciNetCrossRefMATHADS Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599–2616 (2015)MathSciNetCrossRefMATHADS
49.
Zurück zum Zitat Sharma, R.D., Thapliyal, K., Pathak, A., Pan, A.K., De, A.: Which verification qubits perform best for secure communication in noisy channel? Quantum Inf. Process. 15, 1703–1718 (2016)MathSciNetCrossRefMATHADS Sharma, R.D., Thapliyal, K., Pathak, A., Pan, A.K., De, A.: Which verification qubits perform best for secure communication in noisy channel? Quantum Inf. Process. 15, 1703–1718 (2016)MathSciNetCrossRefMATHADS
50.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New Delhi (2008)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New Delhi (2008)MATH
51.
Zurück zum Zitat Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)CrossRefADS Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)CrossRefADS
52.
Zurück zum Zitat Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)CrossRefADS Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)CrossRefADS
53.
Zurück zum Zitat Pathak, A., Thapliyal, K.: A comment on the one step quantum key distribution based on EPR entanglement. arXiv preprint arXiv:1609.07473 (2016) Pathak, A., Thapliyal, K.: A comment on the one step quantum key distribution based on EPR entanglement. arXiv preprint arXiv:​1609.​07473 (2016)
55.
Zurück zum Zitat Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)CrossRefADS Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)CrossRefADS
56.
Zurück zum Zitat Mishra, S., et al.: An integrated hierarchical dynamic quantum secret sharing protocol. Int. J. Theor. Phys. 54, 3143–3154 (2015)CrossRefMATH Mishra, S., et al.: An integrated hierarchical dynamic quantum secret sharing protocol. Int. J. Theor. Phys. 54, 3143–3154 (2015)CrossRefMATH
57.
Zurück zum Zitat Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum. Inf. Process. 15, 4681 (2016)MathSciNetCrossRefMATHADS Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum. Inf. Process. 15, 4681 (2016)MathSciNetCrossRefMATHADS
58.
59.
Zurück zum Zitat Hu, J.-Y., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)CrossRef Hu, J.-Y., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)CrossRef
60.
Zurück zum Zitat Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)CrossRefADS Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)CrossRefADS
Metadaten
Titel
Quantum conference
verfasst von
Anindita Banerjee
Kishore Thapliyal
Chitra Shukla
Anirban Pathak
Publikationsdatum
01.07.2018
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 7/2018
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-018-1931-9

Weitere Artikel der Ausgabe 7/2018

Quantum Information Processing 7/2018 Zur Ausgabe

Neuer Inhalt