Skip to main content
Erschienen in: Quantum Information Processing 9/2017

01.09.2017

Quantum watermarking scheme through Arnold scrambling and LSB steganography

Erschienen in: Quantum Information Processing | Ausgabe 9/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Based on the NEQR of quantum images, a new quantum gray-scale image watermarking scheme is proposed through Arnold scrambling and least significant bit (LSB) steganography. The sizes of the carrier image and the watermark image are assumed to be \(2n\times 2n\) and \(n\times n\), respectively. Firstly, a classical \(n\times n\) sized watermark image with 8-bit gray scale is expanded to a \(2n\times 2n\) sized image with 2-bit gray scale. Secondly, through the module of PA-MOD N, the expanded watermark image is scrambled to a meaningless image by the Arnold transform. Then, the expanded scrambled image is embedded into the carrier image by the steganography method of LSB. Finally, the time complexity analysis is given. The simulation experiment results show that our quantum circuit has lower time complexity, and the proposed watermarking scheme is superior to others.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
3.
Zurück zum Zitat Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 124–134 (1994) Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 124–134 (1994)
4.
Zurück zum Zitat Grover, L.A.: fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, 212–219 (1996) Grover, L.A.: fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, 212–219 (1996)
5.
Zurück zum Zitat Venegas-Andraca, S., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics.In: Proceedings of SPIE Conference of Quantum Information and Computation, 5105, 134–147 (2003) Venegas-Andraca, S., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics.In: Proceedings of SPIE Conference of Quantum Information and Computation, 5105, 134–147 (2003)
7.
Zurück zum Zitat Le, P., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quant. Inf. Process. 10(1), 63–84 (2011)MathSciNetCrossRefMATH Le, P., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quant. Inf. Process. 10(1), 63–84 (2011)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Zhang, Y., Lu, K., Gao, Y., et al.: NEQR: a novel enhanced quantum representation of digital images. Quant. Inf. Process. 12(8), 2833–2860 (2013)MathSciNetCrossRefADSMATH Zhang, Y., Lu, K., Gao, Y., et al.: NEQR: a novel enhanced quantum representation of digital images. Quant. Inf. Process. 12(8), 2833–2860 (2013)MathSciNetCrossRefADSMATH
9.
10.
Zurück zum Zitat Li, H., Zhu, Q., Lan, S., Shen, C., Zhou, R., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quant. Inf. Process. 12(6), 2269–2290 (2013)MathSciNetCrossRefADSMATH Li, H., Zhu, Q., Lan, S., Shen, C., Zhou, R., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quant. Inf. Process. 12(6), 2269–2290 (2013)MathSciNetCrossRefADSMATH
11.
Zurück zum Zitat Li, H., Zhu, Q., Zhou, R., Song, L., Yang, X.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quant. Inf. Process. 13(4), 991–1011 (2014)MathSciNetCrossRefADSMATH Li, H., Zhu, Q., Zhou, R., Song, L., Yang, X.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quant. Inf. Process. 13(4), 991–1011 (2014)MathSciNetCrossRefADSMATH
12.
Zurück zum Zitat Yuan, S., Mao, X., Xue, Y., Chen, L., Xiong, Q., Compare, A.: SQR: a simple quantum representation of infrared images. Quant. Inf. Process. 13(6), 1353–1379 (2014)MathSciNetCrossRefADSMATH Yuan, S., Mao, X., Xue, Y., Chen, L., Xiong, Q., Compare, A.: SQR: a simple quantum representation of infrared images. Quant. Inf. Process. 13(6), 1353–1379 (2014)MathSciNetCrossRefADSMATH
13.
14.
Zurück zum Zitat Iliyasu, A.: Towards realising secure and efficient image and video processing applications on quantum computers. Entropy 15, 2874–2974 (2013)MathSciNetCrossRefADSMATH Iliyasu, A.: Towards realising secure and efficient image and video processing applications on quantum computers. Entropy 15, 2874–2974 (2013)MathSciNetCrossRefADSMATH
15.
16.
Zurück zum Zitat Yan, F.: Quantum Computation Based Image Data Searching, Image Watermarking, and representation of Emotion Space. Ph.D. Thesis, Tokyo Institute of Technology, Japan (2014) Yan, F.: Quantum Computation Based Image Data Searching, Image Watermarking, and representation of Emotion Space. Ph.D. Thesis, Tokyo Institute of Technology, Japan (2014)
17.
Zurück zum Zitat Yan, F., Iliyasu, A., Jiang, Z.: Quantum computation-based image representation, processing operations and their applications. Entropy 16(10), 5290–5338 (2014)MathSciNetCrossRefADS Yan, F., Iliyasu, A., Jiang, Z.: Quantum computation-based image representation, processing operations and their applications. Entropy 16(10), 5290–5338 (2014)MathSciNetCrossRefADS
18.
Zurück zum Zitat Le, P.Q., Iliyasu, A.M., Dong, F., et al.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412(15), 1406–1418 (2011)MathSciNetCrossRefMATH Le, P.Q., Iliyasu, A.M., Dong, F., et al.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412(15), 1406–1418 (2011)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Fan, P., Zhou, R.G., Jing, N., et al.: Geometric transformations of multidimensional color images based on NASS. Inf. Sci. S 340–341, 191–208 (2016)CrossRef Fan, P., Zhou, R.G., Jing, N., et al.: Geometric transformations of multidimensional color images based on NASS. Inf. Sci. S 340–341, 191–208 (2016)CrossRef
20.
Zurück zum Zitat Le, P.Q., Iliyasu, A.M., Dong, F., et al.: Fast geometric transformations on quantum images. Iaeng Int. J. Appl. Math. 40(3), 113–123 (2010)MathSciNetMATH Le, P.Q., Iliyasu, A.M., Dong, F., et al.: Fast geometric transformations on quantum images. Iaeng Int. J. Appl. Math. 40(3), 113–123 (2010)MathSciNetMATH
21.
Zurück zum Zitat Le, P.Q., Iliyasu, A.M., Dong, F., et al.: Efficient color transformations on quantum images. J. Adv. Comput. Intell. Intell. Inf. 15(6), 698–706 (2011)CrossRef Le, P.Q., Iliyasu, A.M., Dong, F., et al.: Efficient color transformations on quantum images. J. Adv. Comput. Intell. Intell. Inf. 15(6), 698–706 (2011)CrossRef
22.
Zurück zum Zitat Fan, P., Zhou, Rigui: Quantum gray-scale image translation transform. J. Comput. Inf. Syst. 11(23), 8763–8770 (2015) Fan, P., Zhou, Rigui: Quantum gray-scale image translation transform. J. Comput. Inf. Syst. 11(23), 8763–8770 (2015)
24.
Zurück zum Zitat Zhou, R.G., Tan, C., Hou, I.: Global and local translation designs of quantum image based on FRQI. Int. J. Theor. Phys. 56(4), 1382–1398 (2017)MathSciNetCrossRef Zhou, R.G., Tan, C., Hou, I.: Global and local translation designs of quantum image based on FRQI. Int. J. Theor. Phys. 56(4), 1382–1398 (2017)MathSciNetCrossRef
25.
Zurück zum Zitat Sang, J., Wang, S., Niu, X.: Quantum realization of the nearest-neighbor interpolation method for FRQI and NEQR. Quant. Inf. Process. 15(1), 37–64 (2016)MathSciNetCrossRefADSMATH Sang, J., Wang, S., Niu, X.: Quantum realization of the nearest-neighbor interpolation method for FRQI and NEQR. Quant. Inf. Process. 15(1), 37–64 (2016)MathSciNetCrossRefADSMATH
26.
27.
Zurück zum Zitat Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quant. Inf. Process. 14(11), 4001–4026 (2015)MathSciNetCrossRefADSMATH Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quant. Inf. Process. 14(11), 4001–4026 (2015)MathSciNetCrossRefADSMATH
28.
Zurück zum Zitat Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quant. Inf. Process. 13(5), 1223–1236 (2014)MathSciNetCrossRefADSMATH Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quant. Inf. Process. 13(5), 1223–1236 (2014)MathSciNetCrossRefADSMATH
29.
30.
Zurück zum Zitat Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)CrossRefMATH Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)CrossRefMATH
31.
32.
Zurück zum Zitat Sang, J., Wang, S., Shi, X., Li, Qiong: Quantum realization of Arnold scrambling for IFRQI. Int. J. Theor. Phys. 55(8), 3706–3721 (2016)MathSciNetCrossRefMATH Sang, J., Wang, S., Shi, X., Li, Qiong: Quantum realization of Arnold scrambling for IFRQI. Int. J. Theor. Phys. 55(8), 3706–3721 (2016)MathSciNetCrossRefMATH
34.
35.
Zurück zum Zitat Zhang, Y., Lu, K., Gao, Y.H.: QSobel: a novel quantum image edge extraction algorithm. Sci. China Inf. Sci. 58(1), 1–13 (2015)MATH Zhang, Y., Lu, K., Gao, Y.H.: QSobel: a novel quantum image edge extraction algorithm. Sci. China Inf. Sci. 58(1), 1–13 (2015)MATH
37.
Zurück zum Zitat Zhang, W.W., Gao, F., Liu, B., Wen, Q.Y., Chen, H.: A watermark strategy for quantum images based on quantum Fourier transform. Quant. Inf. Process. 12(2), 793–803 (2013)MathSciNetCrossRefADSMATH Zhang, W.W., Gao, F., Liu, B., Wen, Q.Y., Chen, H.: A watermark strategy for quantum images based on quantum Fourier transform. Quant. Inf. Process. 12(2), 793–803 (2013)MathSciNetCrossRefADSMATH
38.
Zurück zum Zitat Song, X.H., Wang, S., Liu, S., et al.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quant. Inf. Process. 12(12), 3689–3706 (2013)MathSciNetCrossRefADSMATH Song, X.H., Wang, S., Liu, S., et al.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quant. Inf. Process. 12(12), 3689–3706 (2013)MathSciNetCrossRefADSMATH
39.
Zurück zum Zitat Song, X., Wang, S., El-Latif, A.A.A., Niu, X.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimed. Syst. 20(4), 379–388 (2014)CrossRef Song, X., Wang, S., El-Latif, A.A.A., Niu, X.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimed. Syst. 20(4), 379–388 (2014)CrossRef
40.
Zurück zum Zitat Miyake, S., Nakamael, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quant. Inf. Process. 15, 1849–1864 (2016)MathSciNetCrossRefADSMATH Miyake, S., Nakamael, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quant. Inf. Process. 15, 1849–1864 (2016)MathSciNetCrossRefADSMATH
41.
Zurück zum Zitat Heidari, S., Naseri, M.: A novel LSB based quantum watermarking. Int. J. Theor. Phys. 55(10), 1–14 (2016)CrossRefMATH Heidari, S., Naseri, M.: A novel LSB based quantum watermarking. Int. J. Theor. Phys. 55(10), 1–14 (2016)CrossRefMATH
42.
Zurück zum Zitat Tirkel, A.Z., Rankin, G.A., VanSchyndel, R.M et al.: Electronic watermark. In: Proceedings of Digital Image Computing: Techniques and Applications, Macquarie University. 666–672 (1993) Tirkel, A.Z., Rankin, G.A., VanSchyndel, R.M et al.: Electronic watermark. In: Proceedings of Digital Image Computing: Techniques and Applications, Macquarie University. 666–672 (1993)
43.
Zurück zum Zitat Arnold, V.I., Avez, A.: Ergodic Problems of Classical Mechanics. Benjamin, New York (1968)MATH Arnold, V.I., Avez, A.: Ergodic Problems of Classical Mechanics. Benjamin, New York (1968)MATH
45.
Zurück zum Zitat Islam, M.S., Rahman, M.M., Begum, Z., et al.: Low cost quantum realization of reversible multiplier circuit. Inf. Technol. J. 8(2), 208–213 (2009)CrossRef Islam, M.S., Rahman, M.M., Begum, Z., et al.: Low cost quantum realization of reversible multiplier circuit. Inf. Technol. J. 8(2), 208–213 (2009)CrossRef
46.
Zurück zum Zitat Thapliyal, H., Ranganathan, N.A .: New design of the reversible subtractor circuit. In: 11th IEEE Conference on Nanotechnology (IEEE-NANO), 2011. IEEE. pp. 1430–1435 (2011) Thapliyal, H., Ranganathan, N.A .: New design of the reversible subtractor circuit. In: 11th IEEE Conference on Nanotechnology (IEEE-NANO), 2011. IEEE. pp. 1430–1435 (2011)
47.
Zurück zum Zitat Kotiyal, S., Thapliyal, H., Ranganathan, N.: Circuit for reversible quantum multiplier based on binary tree optimizing ancilla and garbage bits. In: 2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems. IEEE. 545–550 (2014) Kotiyal, S., Thapliyal, H., Ranganathan, N.: Circuit for reversible quantum multiplier based on binary tree optimizing ancilla and garbage bits. In: 2014 27th International Conference on VLSI Design and 2014 13th International Conference on Embedded Systems. IEEE. 545–550 (2014)
48.
Zurück zum Zitat Weinfurter, H., Smolin, J.A.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)CrossRefADS Weinfurter, H., Smolin, J.A.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)CrossRefADS
Metadaten
Titel
Quantum watermarking scheme through Arnold scrambling and LSB steganography
Publikationsdatum
01.09.2017
Erschienen in
Quantum Information Processing / Ausgabe 9/2017
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-017-1640-9

Weitere Artikel der Ausgabe 9/2017

Quantum Information Processing 9/2017 Zur Ausgabe

Neuer Inhalt