Skip to main content
Erschienen in: Rare Metals 9/2023

02.01.2019

Quench sensitivity of Al–Cu–Mg alloy thick plate

verfasst von: Yuan Yin, Bing-Hui Luo, Zhen-Hai Bai, Hui-Bo Jing

Erschienen in: Rare Metals | Ausgabe 9/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The quench sensitivity of Al–Cu–Mg alloy was investigated at different thicknesses of the thick plate. The quenching process was simulated via finite element analysis (FEA); time–temperature–property (TTP) curves and time–temperature–transformation (TTT) curves were obtained through hardness test and differential scanning calorimetry (DSC) test; and the microstructural observation was carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Experimental results exhibit that the quench cooling rate decreases dramatically from the surface to the center of the plate, and the inhomogeneous quenching causes the difference in microstructure. With the decrease in quench cooling rate, constituent particles are coarsening gradually; the quantity of T-phase (Al20Cu2Mn3) increases and the S-phase (Al2CuMg) decreases. According to the precipitation kinetics analysis, the decrease in S-phase is caused by the increase in precipitate activation energy. So that the center of the plate shows the highest quenching sensitivity, which is consistent with the analysis of time–temperature–property curves and time–temperature–transformation curves.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Warner T. Recently-developed aluminum solutions for aerospace applications. Mater Sci Forum. 2006;519–521:1271.CrossRef Warner T. Recently-developed aluminum solutions for aerospace applications. Mater Sci Forum. 2006;519–521:1271.CrossRef
[2]
Zurück zum Zitat Dursun T, Soutis C. Recent developments in advanced aircraft aluminum alloys. Mater Des. 2014;56(4):862.CrossRef Dursun T, Soutis C. Recent developments in advanced aircraft aluminum alloys. Mater Des. 2014;56(4):862.CrossRef
[3]
Zurück zum Zitat Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller WS. Recent development in aluminum alloys for aerospace applications. Mater Sci Eng A. 2000;280(1):102.CrossRef Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller WS. Recent development in aluminum alloys for aerospace applications. Mater Sci Eng A. 2000;280(1):102.CrossRef
[4]
Zurück zum Zitat Cavazos JL, Colás R. Quench sensitivity of a heat treatable aluminum alloy. Mater Sci Eng A. 2003;363(1):171.CrossRef Cavazos JL, Colás R. Quench sensitivity of a heat treatable aluminum alloy. Mater Sci Eng A. 2003;363(1):171.CrossRef
[5]
Zurück zum Zitat Evancho JW, Staley JT. Kinetics of precipitation in aluminum alloys during continuous cooling. Metall Mater Trans B. 1974;5(1):43.CrossRef Evancho JW, Staley JT. Kinetics of precipitation in aluminum alloys during continuous cooling. Metall Mater Trans B. 1974;5(1):43.CrossRef
[6]
Zurück zum Zitat Staley JT. Quench factor analysis of aluminum alloys. Mater Sci Technol. 1987;3(11):923.CrossRef Staley JT. Quench factor analysis of aluminum alloys. Mater Sci Technol. 1987;3(11):923.CrossRef
[7]
Zurück zum Zitat Avrami M. Kinetics of phase change. I General theory. J Chem Phys. 1939;7(12):1103.CrossRef Avrami M. Kinetics of phase change. I General theory. J Chem Phys. 1939;7(12):1103.CrossRef
[8]
Zurück zum Zitat Wang H, Yi Y, Huang S. Investigation of quench sensitivity of high strength 2219 aluminum alloy by TTP and TTT diagrams. J Alloys Compd. 2017;690:446.CrossRef Wang H, Yi Y, Huang S. Investigation of quench sensitivity of high strength 2219 aluminum alloy by TTP and TTT diagrams. J Alloys Compd. 2017;690:446.CrossRef
[9]
Zurück zum Zitat Tiryakioğlu M, Shuey RT. Quench sensitivity of 2219-T87 aluminum alloy plate. Mater Sci Eng A. 2010;527(18):5033.CrossRef Tiryakioğlu M, Shuey RT. Quench sensitivity of 2219-T87 aluminum alloy plate. Mater Sci Eng A. 2010;527(18):5033.CrossRef
[12]
Zurück zum Zitat Kongthep J, Juijerm P. Kinetics of precipitation hardening phase in aluminum alloy AA 6110. Mater Sci Technol. 2014;30(14):1815.CrossRef Kongthep J, Juijerm P. Kinetics of precipitation hardening phase in aluminum alloy AA 6110. Mater Sci Technol. 2014;30(14):1815.CrossRef
[13]
Zurück zum Zitat Archambault P, Godard D. High temperature precipitation kinetics and TTT curve of a 7xxx alloy by in situ electrical resistivity measurements and differential calorimetry. Scr Mater. 2000;42(7):675.CrossRef Archambault P, Godard D. High temperature precipitation kinetics and TTT curve of a 7xxx alloy by in situ electrical resistivity measurements and differential calorimetry. Scr Mater. 2000;42(7):675.CrossRef
[14]
Zurück zum Zitat Davydov VG, Ber LB, Kaputkin EY, Komov VI, Ukolova OG, Lukina EA. TTP and TTT diagrams for quench sensitivity and ageing of 1424 alloy. Mater Sci Eng A. 2000;280(1):76.CrossRef Davydov VG, Ber LB, Kaputkin EY, Komov VI, Ukolova OG, Lukina EA. TTP and TTT diagrams for quench sensitivity and ageing of 1424 alloy. Mater Sci Eng A. 2000;280(1):76.CrossRef
[15]
Zurück zum Zitat Zhang L, Feng X, Li Z, Liu C. FEM simulation and experimental study on the quenching residual stress of aluminum alloy 2024. Proc Inst Mech Eng Part B J Eng Manuf. 2013;227(7):954.CrossRef Zhang L, Feng X, Li Z, Liu C. FEM simulation and experimental study on the quenching residual stress of aluminum alloy 2024. Proc Inst Mech Eng Part B J Eng Manuf. 2013;227(7):954.CrossRef
[16]
Zurück zum Zitat Le Masson P, Loulou T, Artioukhine E, Rogeon P, Carron D, Quemener JJ. A numerical study for the estimation of a convection heat transfer coefficient during a metallurgical “Jominy end-quench” test. Int J Therm Sci. 2002;41(6):517.CrossRef Le Masson P, Loulou T, Artioukhine E, Rogeon P, Carron D, Quemener JJ. A numerical study for the estimation of a convection heat transfer coefficient during a metallurgical “Jominy end-quench” test. Int J Therm Sci. 2002;41(6):517.CrossRef
[17]
Zurück zum Zitat Kim HK, Oh SI. Evaluation of heat transfer coefficient during heat treatment by inverse analysis. J Mater Process Technol. 2001;112(2):157.CrossRef Kim HK, Oh SI. Evaluation of heat transfer coefficient during heat treatment by inverse analysis. J Mater Process Technol. 2001;112(2):157.CrossRef
[18]
Zurück zum Zitat Dong YB, Shao WZ, Jiang JT, Chao DY, Zhen L. Influence of quenching rate on microstructure and dimensional stability of Al–Cu–Mg–Si alloy. Mater Sci Technol. 2016;32(18):1861.CrossRef Dong YB, Shao WZ, Jiang JT, Chao DY, Zhen L. Influence of quenching rate on microstructure and dimensional stability of Al–Cu–Mg–Si alloy. Mater Sci Technol. 2016;32(18):1861.CrossRef
[19]
Zurück zum Zitat Lv X, Guo E, Li Z, Wang G. Research on microstructure in as-cast 7A55 aluminum alloy and its evolution during homogenization. Rare Met. 2011;30(6):664.CrossRef Lv X, Guo E, Li Z, Wang G. Research on microstructure in as-cast 7A55 aluminum alloy and its evolution during homogenization. Rare Met. 2011;30(6):664.CrossRef
[20]
Zurück zum Zitat Wang SC, Starink MJ. Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int Mater Rev. 2005;50(4):193.CrossRef Wang SC, Starink MJ. Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int Mater Rev. 2005;50(4):193.CrossRef
[21]
Zurück zum Zitat Shen Z, Liu C, Ding Q, Wang S, Wei X, Chen L. The structure determination of Al20Cu2Mn3 by near atomic resolution chemical mapping. J Alloys Compd. 2014;601(9):25.CrossRef Shen Z, Liu C, Ding Q, Wang S, Wei X, Chen L. The structure determination of Al20Cu2Mn3 by near atomic resolution chemical mapping. J Alloys Compd. 2014;601(9):25.CrossRef
[22]
Zurück zum Zitat Banerjee S, Robi PS, Srinivasan A. Calorimetric study of precipitation kinetics of Al–Cu–Mg and Al–Cu–Mg-0.06 wt% Sn alloys. Met Mater Int. 2010;16(4):523.CrossRef Banerjee S, Robi PS, Srinivasan A. Calorimetric study of precipitation kinetics of Al–Cu–Mg and Al–Cu–Mg-0.06 wt% Sn alloys. Met Mater Int. 2010;16(4):523.CrossRef
[23]
Zurück zum Zitat Smith GW. Precipitation kinetics in solutionized aluminum alloy 2124: determination by scanning and isothermal calorimetry. Thermochim Acta. 1998;317(1):7.CrossRef Smith GW. Precipitation kinetics in solutionized aluminum alloy 2124: determination by scanning and isothermal calorimetry. Thermochim Acta. 1998;317(1):7.CrossRef
[24]
Zurück zum Zitat Liu JC, Zhang YA, Liu HW, Li XW, Li ZH, Zhu BH. Hardenability of 2124 aluminum alloy based on Jominy end quench test. Chin J Nonferrous Met. 2010;20(11):2118. Liu JC, Zhang YA, Liu HW, Li XW, Li ZH, Zhu BH. Hardenability of 2124 aluminum alloy based on Jominy end quench test. Chin J Nonferrous Met. 2010;20(11):2118.
[25]
Zurück zum Zitat Christian JW. The theory of transformations in metals and alloys. New York: Newnes; 2002. 538. Christian JW. The theory of transformations in metals and alloys. New York: Newnes; 2002. 538.
[26]
Zurück zum Zitat Rios PR, Villa E. On the generalization of JMAK’s theory. Mater Sci Forum. 2013;753:137.CrossRef Rios PR, Villa E. On the generalization of JMAK’s theory. Mater Sci Forum. 2013;753:137.CrossRef
[27]
Zurück zum Zitat Boswell PG. On the calculation of activation energies using a modified Kissinger method. J Therm Anal Calorim. 1980;18(2):353.CrossRef Boswell PG. On the calculation of activation energies using a modified Kissinger method. J Therm Anal Calorim. 1980;18(2):353.CrossRef
[28]
Zurück zum Zitat Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702.CrossRef Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702.CrossRef
[29]
Zurück zum Zitat Harlow DG, Nardiello J, Payne J. The effect of constituent particles in aluminum alloys on fatigue damage evolution: statistical observations. Int J Fatigue. 2010;32(3):505.CrossRef Harlow DG, Nardiello J, Payne J. The effect of constituent particles in aluminum alloys on fatigue damage evolution: statistical observations. Int J Fatigue. 2010;32(3):505.CrossRef
[30]
Zurück zum Zitat Staab TEM, Haaks M, Modrow H. Early precipitation stages of aluminum alloys-the role of quenched-in vacancies. Appl Surf Sci. 2008;255(1):132.CrossRef Staab TEM, Haaks M, Modrow H. Early precipitation stages of aluminum alloys-the role of quenched-in vacancies. Appl Surf Sci. 2008;255(1):132.CrossRef
Metadaten
Titel
Quench sensitivity of Al–Cu–Mg alloy thick plate
verfasst von
Yuan Yin
Bing-Hui Luo
Zhen-Hai Bai
Hui-Bo Jing
Publikationsdatum
02.01.2019
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 9/2023
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-018-1196-6

Weitere Artikel der Ausgabe 9/2023

Rare Metals 9/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.