Skip to main content
Erschienen in: Polymer Bulletin 7/2020

25.11.2019 | Original Paper

RAFT polymerization of styrene mediated by naphthyl-functionalized trithiocarbonate RAFT agents

verfasst von: Gabriel J. Summers, Thembinkosi S. Mdletshe, Carol A. Summers

Erschienen in: Polymer Bulletin | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Three new naphthyl-functionalized trithiocarbonate RAFT agents, ethyl 1-naphthylmethyltrithiocarbonate, butyl 1-naphthylmethyltrithiocarbonate and dodecyl 1-naphthylmethyltrithiocarbonate, were prepared and employed as chain transfer agents in RAFT polymerization reactions. The RAFT polymerization of styrene, mediated by the different naphthyl-functionalized trithiocarbonate RAFT agents, with AIBN as the initiator at 75 °C proceeded via a controlled/living polymerization process to produce quantitative yields of α-naphthyl-functionalized polymers with the naphthyl group introduced at the α-terminus of the polymer chain. Ultraviolet visible spectroscopy and fluorescence spectroscopy data provide evidence for the incorporation of the naphthyl group at the α-terminus of the polymer chain. Polymer kinetic measurements show that each polymerization reaction follows first-order rate kinetics with respect to monomer consumption and the number average molecular weights increase linearly with monomer conversion to produce polymers with narrow molecular weight distributions. The percentage monomer conversion for each reaction was monitored by 1H NMR spectroscopy. The naphthyl-functionalized trithiocarbonate chain transfer agents and the α-naphthyl-functionalized polymers were characterized by 1H and 13C NMR spectroscopy, FTIR spectroscopy, size exclusion chromatography, ultraviolet visible spectroscopy and fluorescence spectroscopy.

Graphic abstract

The AIBN-initiated RAFT polymerization of styrene, mediated by new alkyl 1-naphthylmethyltrithiocarbonate RAFT agents at 75 °C proceeded via controlled/living polymerization processes to produce quantitative yields of α-naphthyl-functionalized polymers with the naphthyl group introduced at the α-terminus of the polymer chain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang YJ, Wu C (2018) Site-specific conjugation of polymers to proteins, and application thereof. Biomacromology 19(6):1804–1825CrossRef Wang YJ, Wu C (2018) Site-specific conjugation of polymers to proteins, and application thereof. Biomacromology 19(6):1804–1825CrossRef
2.
Zurück zum Zitat Vinciguerra D, Denis S, Mougin J, Jacobs M, Guillaneuf Y, Mura S, Couvreur P, Nicolas J (2018) A facile route to heterotelechelic polymer prodrug nanoparticles for imaging, drug delivery and combination therapy. J Control Release 286:425–438PubMedCrossRef Vinciguerra D, Denis S, Mougin J, Jacobs M, Guillaneuf Y, Mura S, Couvreur P, Nicolas J (2018) A facile route to heterotelechelic polymer prodrug nanoparticles for imaging, drug delivery and combination therapy. J Control Release 286:425–438PubMedCrossRef
3.
Zurück zum Zitat Zeng ZJ, Hou GY, Xia XY, Liu J, Tsige MF, Wu YP, Zang LQ (2017) Molecular dynamics simulation study of polymer nanocomposites with controllable dispersion of spherical nanoparticles. J Phys Chem B 121(43):10146–10156CrossRef Zeng ZJ, Hou GY, Xia XY, Liu J, Tsige MF, Wu YP, Zang LQ (2017) Molecular dynamics simulation study of polymer nanocomposites with controllable dispersion of spherical nanoparticles. J Phys Chem B 121(43):10146–10156CrossRef
4.
Zurück zum Zitat Bandyopadhyay S, Xia X, Maiseiyeu A, Mihai G, Rajagopalan S, Bong S (2012) Z-Group ketone chain transfer agents for RAFT polymer nanoparticle modification via hydrazone conjugation. Macromolecules 45(17):6766–6773PubMedPubMedCentralCrossRef Bandyopadhyay S, Xia X, Maiseiyeu A, Mihai G, Rajagopalan S, Bong S (2012) Z-Group ketone chain transfer agents for RAFT polymer nanoparticle modification via hydrazone conjugation. Macromolecules 45(17):6766–6773PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Pentzer EB, Bokel FA, Hayward RC, Emrick T (2012) Nanocomposite “Superhighways” by solution assembly of semiconductor nanostructures with ligand-functionalized conjugated polymers. Adv Mater 24(17):2254–2258PubMedCrossRef Pentzer EB, Bokel FA, Hayward RC, Emrick T (2012) Nanocomposite “Superhighways” by solution assembly of semiconductor nanostructures with ligand-functionalized conjugated polymers. Adv Mater 24(17):2254–2258PubMedCrossRef
6.
Zurück zum Zitat Ashcraft E, Ji H, Mays J, Dadmun M (2011) Grafting polymer loops onto functionalized nanotubes: monitoring grafting and loop formation. Macromol Chem Phys 212(5):465–477CrossRef Ashcraft E, Ji H, Mays J, Dadmun M (2011) Grafting polymer loops onto functionalized nanotubes: monitoring grafting and loop formation. Macromol Chem Phys 212(5):465–477CrossRef
7.
Zurück zum Zitat Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101:3661–3688PubMedCrossRef Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101:3661–3688PubMedCrossRef
8.
Zurück zum Zitat Grubbs RB (2011) Nitroxide-mediated radical polymerization: limitations and versatility. Polym Rev 51:104–137CrossRef Grubbs RB (2011) Nitroxide-mediated radical polymerization: limitations and versatility. Polym Rev 51:104–137CrossRef
9.
Zurück zum Zitat Matyjaszewski K, Wang JS (1995) Controlled/”living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc 117:5614–5615CrossRef Matyjaszewski K, Wang JS (1995) Controlled/”living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc 117:5614–5615CrossRef
10.
Zurück zum Zitat Matyjaszewski K, Xia JH (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990PubMedCrossRef Matyjaszewski K, Xia JH (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990PubMedCrossRef
11.
Zurück zum Zitat Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31:5559–5562CrossRef Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31:5559–5562CrossRef
12.
Zurück zum Zitat Moad G, Chen M, Haussler M, Postma A, Rizzardo E, Thang SH (2011) Functional polymers for optoelectronic applications by RAFT polymerization. Polym Chem 2:492–519CrossRef Moad G, Chen M, Haussler M, Postma A, Rizzardo E, Thang SH (2011) Functional polymers for optoelectronic applications by RAFT polymerization. Polym Chem 2:492–519CrossRef
13.
Zurück zum Zitat Moad G, Chong YK, Postma A, Rizzardo E, Thang SH (2005) Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer 46:8458–8468CrossRef Moad G, Chong YK, Postma A, Rizzardo E, Thang SH (2005) Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer 46:8458–8468CrossRef
14.
Zurück zum Zitat Cortez-Lemus NA, Salgado-Rodriguez R, Licea-Claverie A (2010) Preparation of α,ω-telechelic hexyl acrylate polymers with –OH, –COOH, and –NH2 functional groups by RAFT. J Polym Sci A: Polym Chem 48:3033–3051CrossRef Cortez-Lemus NA, Salgado-Rodriguez R, Licea-Claverie A (2010) Preparation of α,ω-telechelic hexyl acrylate polymers with –OH, –COOH, and –NH2 functional groups by RAFT. J Polym Sci A: Polym Chem 48:3033–3051CrossRef
15.
Zurück zum Zitat Postma A, Davis TP, Evans RA, Li GX, Moad G, O’Shea MS (2006) Synthesis of well-defined polystyrene with primary amine end groups through the use of phthalimido-functional RAFT agents. Macromolecules 39:5293–5306CrossRef Postma A, Davis TP, Evans RA, Li GX, Moad G, O’Shea MS (2006) Synthesis of well-defined polystyrene with primary amine end groups through the use of phthalimido-functional RAFT agents. Macromolecules 39:5293–5306CrossRef
16.
Zurück zum Zitat Grover GN, Lee JY, Matsumoto NM, Maynard HD (2012) Aminooxy and pyridyl disulfide telechelic poly(poly(ethylene glycol) acrylate) by RAFT polymerization. Macromolecules 45:4958–4965CrossRef Grover GN, Lee JY, Matsumoto NM, Maynard HD (2012) Aminooxy and pyridyl disulfide telechelic poly(poly(ethylene glycol) acrylate) by RAFT polymerization. Macromolecules 45:4958–4965CrossRef
17.
Zurück zum Zitat Lai JT, Filla D, Shea R (2002) Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 35:6754–6756CrossRef Lai JT, Filla D, Shea R (2002) Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 35:6754–6756CrossRef
18.
Zurück zum Zitat Cortez-Lemus NA, Licea-Claverie A (2016) Synthesis and characterization of “Living” star-shaped poly(N-vinylcaprolactam) with four arms and carboxylic acid end groups. J Polym Sci A: Polym Chem 54(14):2156–2165CrossRef Cortez-Lemus NA, Licea-Claverie A (2016) Synthesis and characterization of “Living” star-shaped poly(N-vinylcaprolactam) with four arms and carboxylic acid end groups. J Polym Sci A: Polym Chem 54(14):2156–2165CrossRef
19.
Zurück zum Zitat Kang HU, Yu YC, Shin SJ, Youk JH (2013) One-step synthesis of block copolymers using a hydroxyl-functionalized trithiocarbonate RAFT agent as a dual initiator for RAFT polymerization and ROP. J Polym Sci: Polym Chem 51(4):774–779CrossRef Kang HU, Yu YC, Shin SJ, Youk JH (2013) One-step synthesis of block copolymers using a hydroxyl-functionalized trithiocarbonate RAFT agent as a dual initiator for RAFT polymerization and ROP. J Polym Sci: Polym Chem 51(4):774–779CrossRef
20.
Zurück zum Zitat Kinoshita K, Mori Y, Takami T, Uchida Y, Murakani Y (2017) Design of dithiobenzoate RAFT agent bearing hydroxyl groups and its application in RAFT polymerization for telechelic diol polymers. Polymers 9(2):44/1–44/10 Kinoshita K, Mori Y, Takami T, Uchida Y, Murakani Y (2017) Design of dithiobenzoate RAFT agent bearing hydroxyl groups and its application in RAFT polymerization for telechelic diol polymers. Polymers 9(2):44/1–44/10
21.
Zurück zum Zitat Jana S, Parthiban A, Chai CLL (2011) Narrow disperse polymers using amine functionalized dithiobenzoate RAFT agent and easy removal of thiocarbonyl end group from the resultant polymers. J Polym Sci A: Polym Chem 49:1494–1502CrossRef Jana S, Parthiban A, Chai CLL (2011) Narrow disperse polymers using amine functionalized dithiobenzoate RAFT agent and easy removal of thiocarbonyl end group from the resultant polymers. J Polym Sci A: Polym Chem 49:1494–1502CrossRef
22.
Zurück zum Zitat Clancy AJ, Serginson JM, Greenfield JL, Shaffer MSP (2017) Systematic comparison of single-walled carbon nanotube/poly(vinyl acetate) graft-to reactions. Polymer 133:263–271CrossRef Clancy AJ, Serginson JM, Greenfield JL, Shaffer MSP (2017) Systematic comparison of single-walled carbon nanotube/poly(vinyl acetate) graft-to reactions. Polymer 133:263–271CrossRef
23.
Zurück zum Zitat Su L, Zhao Y, Chen GS, Jiang M (2012) Polymeric vesicles mimicking glycocalyx (PV-Gx) for studying carbohydrate-protein interactions in solution. Polym Chem 3:1560–1566CrossRef Su L, Zhao Y, Chen GS, Jiang M (2012) Polymeric vesicles mimicking glycocalyx (PV-Gx) for studying carbohydrate-protein interactions in solution. Polym Chem 3:1560–1566CrossRef
24.
Zurück zum Zitat Hetzer M, Schmidt BVKJ, Barner-Kowollik C, Ritter H (2013) Limitations of cyclodextrin-mediated RAFT homopolymerization and block copolymer formation. J Polym Sci A: Polym Chem 51:2504–2517CrossRef Hetzer M, Schmidt BVKJ, Barner-Kowollik C, Ritter H (2013) Limitations of cyclodextrin-mediated RAFT homopolymerization and block copolymer formation. J Polym Sci A: Polym Chem 51:2504–2517CrossRef
25.
Zurück zum Zitat Keddie DJ, Moad G, Rizzardo E, Thang SH (2012) RAFT agent design and synthesis. Macromolecules 45:5321–5342CrossRef Keddie DJ, Moad G, Rizzardo E, Thang SH (2012) RAFT agent design and synthesis. Macromolecules 45:5321–5342CrossRef
26.
Zurück zum Zitat Benaglia M, Chiefari J, Chong YK, Moad G, Rizzardo E, Thang SH (2009) Universal (switchable) RAFT agents. J Am Chem Soc 131:6914–6915PubMedCrossRef Benaglia M, Chiefari J, Chong YK, Moad G, Rizzardo E, Thang SH (2009) Universal (switchable) RAFT agents. J Am Chem Soc 131:6914–6915PubMedCrossRef
27.
Zurück zum Zitat Jancy B, Asha SK (2009) Synthesis and self-organization properties of copolyurethanes based on perylenediimide and naphthalenediimide units. J Polym Sci A: Polym Chem 47:1224–1235CrossRef Jancy B, Asha SK (2009) Synthesis and self-organization properties of copolyurethanes based on perylenediimide and naphthalenediimide units. J Polym Sci A: Polym Chem 47:1224–1235CrossRef
28.
Zurück zum Zitat Fan YL, Barlow S, Zhang SY, Lin BP, Marder SR (2016) Comparison of 3D non-fullerene acceptors for organic photovoltaics based on naphthalene diimide and perylene diimide-substituted 9,9’-bifluorenylidene. RSC Adv 6:70493–70500CrossRef Fan YL, Barlow S, Zhang SY, Lin BP, Marder SR (2016) Comparison of 3D non-fullerene acceptors for organic photovoltaics based on naphthalene diimide and perylene diimide-substituted 9,9’-bifluorenylidene. RSC Adv 6:70493–70500CrossRef
29.
Zurück zum Zitat Sommer M (2014) Conjugated polymers based on naphthalene diimide for organic electronics. J Mater Chem C: Mater Opt Elect Dev 2:3088–3098CrossRef Sommer M (2014) Conjugated polymers based on naphthalene diimide for organic electronics. J Mater Chem C: Mater Opt Elect Dev 2:3088–3098CrossRef
30.
Zurück zum Zitat Yuney K, Icil H (2007) Synthesis, photochemical, and electrochemical properties of naphthalene-1,4,5,8-tetracarboxylic acid-bis-(N,N’-bis-(2,2,4(2,4,4)-trimethylhexylpolyimide)) and poly(N,N’-bis-(2,2,4(2,4,4)-trimethyl-6-aminohexyl) 3,4,9,10-perylenetetracarboxdiimide). Eur Polym J 43:2308–2320CrossRef Yuney K, Icil H (2007) Synthesis, photochemical, and electrochemical properties of naphthalene-1,4,5,8-tetracarboxylic acid-bis-(N,N’-bis-(2,2,4(2,4,4)-trimethylhexylpolyimide)) and poly(N,N’-bis-(2,2,4(2,4,4)-trimethyl-6-aminohexyl) 3,4,9,10-perylenetetracarboxdiimide). Eur Polym J 43:2308–2320CrossRef
31.
Zurück zum Zitat Hwang YJ, Earmme T, Courtright BAE, Eberle FN, Jenekhe SA (2015) n-Type semiconducting naphthalene diimide-perylene diimide copolymers: controlling crystallinity, blend morphology, and compatibility toward high-performance all-polymer solar cells. J Am Chem Soc 137:4424–4434PubMedCrossRef Hwang YJ, Earmme T, Courtright BAE, Eberle FN, Jenekhe SA (2015) n-Type semiconducting naphthalene diimide-perylene diimide copolymers: controlling crystallinity, blend morphology, and compatibility toward high-performance all-polymer solar cells. J Am Chem Soc 137:4424–4434PubMedCrossRef
32.
Zurück zum Zitat Xiao B, Ding GD, Tan ZA, Zhou EJ (2015) A comparison of n-type copolymers based on cyclopentadithiophene and naphthalene diimide/perylene diimides for all-polymer solar cell applications. Polym Chem 6:7594–7602CrossRef Xiao B, Ding GD, Tan ZA, Zhou EJ (2015) A comparison of n-type copolymers based on cyclopentadithiophene and naphthalene diimide/perylene diimides for all-polymer solar cell applications. Polym Chem 6:7594–7602CrossRef
33.
Zurück zum Zitat Lui W, Tkachov R, Komber H, Senkovskyy V, Schubert M, Wei Z, Facchetti A, Neher D, Kiriy A (2014) Chain-growth polycondensation of perylene diimide-based copolymers: a new route to regio-regular perylene diimide-based acceptors for all-polymer solar cells and n-type transistors. Polym Chem 5:3404–3411CrossRef Lui W, Tkachov R, Komber H, Senkovskyy V, Schubert M, Wei Z, Facchetti A, Neher D, Kiriy A (2014) Chain-growth polycondensation of perylene diimide-based copolymers: a new route to regio-regular perylene diimide-based acceptors for all-polymer solar cells and n-type transistors. Polym Chem 5:3404–3411CrossRef
34.
Zurück zum Zitat Zhang H, Zhou NC, Zhu X, Chen XR, Zhang ZB, Zhang W, Zhu J, Hu ZJ, Zhu XL (2012) Cyclic side-chain phenylazo naphthalene polymers: enhanced fluorescence emission and surface relief grating formation. Macromol Rapid Commun 33:1845–1851PubMedCrossRef Zhang H, Zhou NC, Zhu X, Chen XR, Zhang ZB, Zhang W, Zhu J, Hu ZJ, Zhu XL (2012) Cyclic side-chain phenylazo naphthalene polymers: enhanced fluorescence emission and surface relief grating formation. Macromol Rapid Commun 33:1845–1851PubMedCrossRef
35.
Zurück zum Zitat Fu JW, Cheng ZP, Zhou NC, Zhu JA, Zhang W, Zhu XL (2008) Reversible addition-fragmentation chain transfer polymerizations of styrene with two novel trithiocarbonates as RAFT agents. Polymer 49:5431–5438CrossRef Fu JW, Cheng ZP, Zhou NC, Zhu JA, Zhang W, Zhu XL (2008) Reversible addition-fragmentation chain transfer polymerizations of styrene with two novel trithiocarbonates as RAFT agents. Polymer 49:5431–5438CrossRef
36.
Zurück zum Zitat Zhou NC, Zhang ZB, Zhang W, Zhu JA, Zhu XL (2009) RAFT polymerization of styrene mediated by naphthalene-containing RAFT agents and optical properties of the polymers. Polymer 50:4352–4362CrossRef Zhou NC, Zhang ZB, Zhang W, Zhu JA, Zhu XL (2009) RAFT polymerization of styrene mediated by naphthalene-containing RAFT agents and optical properties of the polymers. Polymer 50:4352–4362CrossRef
37.
Zurück zum Zitat Zhu JA, Zhu XL, Cheng ZP, Liu F, Lu JM (2002) Study on controlled free-radical polymerization in the presence of 2-cyanoprop-2-yl 1-dithionaphthalate (CPDN). Polymer 43:7037–7042CrossRef Zhu JA, Zhu XL, Cheng ZP, Liu F, Lu JM (2002) Study on controlled free-radical polymerization in the presence of 2-cyanoprop-2-yl 1-dithionaphthalate (CPDN). Polymer 43:7037–7042CrossRef
38.
Zurück zum Zitat Zhang W, Zhu XI, Zhou D, Wang XY, Zhu JA (2005) Reversible addition-fragmentation chain transfer polymerization of 2-naphthyl acrylate with 2-cyanoprop-2-yl 1-dithionaphthalate as a chain-transfer agent. J Polym Sci A: Polym Chem 43:2632–2642CrossRef Zhang W, Zhu XI, Zhou D, Wang XY, Zhu JA (2005) Reversible addition-fragmentation chain transfer polymerization of 2-naphthyl acrylate with 2-cyanoprop-2-yl 1-dithionaphthalate as a chain-transfer agent. J Polym Sci A: Polym Chem 43:2632–2642CrossRef
39.
Zurück zum Zitat Zhu JA, Zhu XL, Zhang ZB, Cheng ZP (2006) Reversible addition-fragmentation chain transfer polymerization of styrene under microwave irradiation. J Polym Sci A: Polym Chem 44:6810–6816CrossRef Zhu JA, Zhu XL, Zhang ZB, Cheng ZP (2006) Reversible addition-fragmentation chain transfer polymerization of styrene under microwave irradiation. J Polym Sci A: Polym Chem 44:6810–6816CrossRef
40.
Zurück zum Zitat Chen M, Ghiggino KP, Rizzardo E, Thang SH, Wilson GJ (2008) Controlled synthesis of luminescent polymers using a bis-dithiobenzoate RAFT agent. Chem Commun 9:1112–1114CrossRef Chen M, Ghiggino KP, Rizzardo E, Thang SH, Wilson GJ (2008) Controlled synthesis of luminescent polymers using a bis-dithiobenzoate RAFT agent. Chem Commun 9:1112–1114CrossRef
41.
Zurück zum Zitat Jaramillo-Soto G, Garcia-Moran PR, Enriquez-Medrano FJ, Maldonado-Textle H, Albores-Velasco ME, Guerrero-Santos R, Vivaldo-Lima E (2009) Effect of stabilizer concentration and controller structure and composition on polymerization rate and molecular weight development in RAFT polymerization of styrene in supercritical carbon dioxide. Polymer 50:5024–5030CrossRef Jaramillo-Soto G, Garcia-Moran PR, Enriquez-Medrano FJ, Maldonado-Textle H, Albores-Velasco ME, Guerrero-Santos R, Vivaldo-Lima E (2009) Effect of stabilizer concentration and controller structure and composition on polymerization rate and molecular weight development in RAFT polymerization of styrene in supercritical carbon dioxide. Polymer 50:5024–5030CrossRef
42.
Zurück zum Zitat Zhou Y, Zhu XL, Cheng ZP, Zhu JA (2007) Living”/controlled polymerization of methyl acrylate mediated by dithiocarbamates under γ-ray irradiation. J Appl Polym Sci 103:1769–1775CrossRef Zhou Y, Zhu XL, Cheng ZP, Zhu JA (2007) Living”/controlled polymerization of methyl acrylate mediated by dithiocarbamates under γ-ray irradiation. J Appl Polym Sci 103:1769–1775CrossRef
43.
Zurück zum Zitat Bigot J, Fournier D, Lyskawa J, Marmin T, Cazaux F, Cooke G, Woisel P (2010) Synthesis of thermoresponsive phenyl- and naphthyl-terminated poly(NIPAM) derivatives using RAFT and their complexation with cyclobis(paraquat-p-phenylene) derivatives in water. Polym Chem 1:1024–1029CrossRef Bigot J, Fournier D, Lyskawa J, Marmin T, Cazaux F, Cooke G, Woisel P (2010) Synthesis of thermoresponsive phenyl- and naphthyl-terminated poly(NIPAM) derivatives using RAFT and their complexation with cyclobis(paraquat-p-phenylene) derivatives in water. Polym Chem 1:1024–1029CrossRef
44.
Zurück zum Zitat Skranania K, Miasnikova A, Bivigou-Koumba AM, Zehm D, Laschewsky A (2011) Examining the UV–vis absorption of RAFT chain transfer agents and their use for polymer analysis. Polym Chem 2:2074–2083CrossRef Skranania K, Miasnikova A, Bivigou-Koumba AM, Zehm D, Laschewsky A (2011) Examining the UV–vis absorption of RAFT chain transfer agents and their use for polymer analysis. Polym Chem 2:2074–2083CrossRef
45.
Zurück zum Zitat Yan DX, Pang H, Li B, Vajtai R, Xu L, Ren PG, Wang JH, Li ZM (2015) Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv Funct Mat 25:559–566CrossRef Yan DX, Pang H, Li B, Vajtai R, Xu L, Ren PG, Wang JH, Li ZM (2015) Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv Funct Mat 25:559–566CrossRef
46.
Zurück zum Zitat Wu N, She XL, Yang DJ, Wu XF, Su FB, Chen YF (2012) Synthesis of network reduced graphene oxide in polystyrene matrix by a two-step reduction method for superior conductivity of the composite. J Mater Chem 22:17254–17261CrossRef Wu N, She XL, Yang DJ, Wu XF, Su FB, Chen YF (2012) Synthesis of network reduced graphene oxide in polystyrene matrix by a two-step reduction method for superior conductivity of the composite. J Mater Chem 22:17254–17261CrossRef
47.
Zurück zum Zitat Tu ZK, Wang J, Yu CJ, Xiao HW, Jiang T, Yang YK, Shi D, Mai YW, Li RKY (2016) A facile approach for preparation of polystyrene/graphene nanocomposites with ultra-low percolation threshold through an electrostatic assembly process. Comp Sci Tech 134:49–56CrossRef Tu ZK, Wang J, Yu CJ, Xiao HW, Jiang T, Yang YK, Shi D, Mai YW, Li RKY (2016) A facile approach for preparation of polystyrene/graphene nanocomposites with ultra-low percolation threshold through an electrostatic assembly process. Comp Sci Tech 134:49–56CrossRef
48.
Zurück zum Zitat Yi T, Liu CF, Sun J, Peng YS, Zhu CY, Xue Y (2012) Method for separating and purifying 1-chloromethylnaphthalene. Chinese Patent CN101597210B Yi T, Liu CF, Sun J, Peng YS, Zhu CY, Xue Y (2012) Method for separating and purifying 1-chloromethylnaphthalene. Chinese Patent CN101597210B
49.
Zurück zum Zitat Summers GJ, Maseko RB, Summers CA (2014) The preparation of α-bis and α,ω-tetrakis aromatic oxazolyl- and carboxyl-functionalized polymers using 1,1-bis[4-(2-(4,4-dimethyl-1,3-oxazolyl))phenyl]ethylene in atom transfer radical polymerization reactions. Polym Int 63:1785–1796CrossRef Summers GJ, Maseko RB, Summers CA (2014) The preparation of α-bis and α,ω-tetrakis aromatic oxazolyl- and carboxyl-functionalized polymers using 1,1-bis[4-(2-(4,4-dimethyl-1,3-oxazolyl))phenyl]ethylene in atom transfer radical polymerization reactions. Polym Int 63:1785–1796CrossRef
50.
Zurück zum Zitat Kopec M, Krys P, Yuan R, Matyjaszewski K (2016) Aqueous RAFT polymerization of acrylonitrile. Macromolecules 49:5977–5983CrossRef Kopec M, Krys P, Yuan R, Matyjaszewski K (2016) Aqueous RAFT polymerization of acrylonitrile. Macromolecules 49:5977–5983CrossRef
51.
Zurück zum Zitat Summers GJ, Quirk RP (1996) Anionic synthesis of aromatic carboxyl functionalized polymers. Chain-end functionalization of poly(styryl)lithium with 4,5-dihydro-4,4-dimethyl-2-[4-(1-phenylethenyl)phenyl]oxazole. Polym Int 40:79–86CrossRef Summers GJ, Quirk RP (1996) Anionic synthesis of aromatic carboxyl functionalized polymers. Chain-end functionalization of poly(styryl)lithium with 4,5-dihydro-4,4-dimethyl-2-[4-(1-phenylethenyl)phenyl]oxazole. Polym Int 40:79–86CrossRef
52.
Zurück zum Zitat Mishra V, Kumar R (2012) RAFT polymerization of N-vinyl pyrrolidone using prop-2-ynyl morpholine-4-carbodithioate as a new chain transfer agent. J Appl Polym Sci 124:4475–4485 Mishra V, Kumar R (2012) RAFT polymerization of N-vinyl pyrrolidone using prop-2-ynyl morpholine-4-carbodithioate as a new chain transfer agent. J Appl Polym Sci 124:4475–4485
Metadaten
Titel
RAFT polymerization of styrene mediated by naphthyl-functionalized trithiocarbonate RAFT agents
verfasst von
Gabriel J. Summers
Thembinkosi S. Mdletshe
Carol A. Summers
Publikationsdatum
25.11.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 7/2020
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-019-03011-7

Weitere Artikel der Ausgabe 7/2020

Polymer Bulletin 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.