Skip to main content
Erschienen in: Meccanica 4/2015

01.04.2015

Rayleigh–Benard convection subject to time dependent wall temperature in a porous medium layer saturated by a nanofluid

verfasst von: J. C. Umavathi

Erschienen in: Meccanica | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The stability of a porous medium saturated with a nanofluid with thermal conductivity and viscosity dependent on the nanoparticle volume fraction is examined in the case of a time-dependent wall temperature. The regular perturbation method based on the small amplitude of modulation is employed to compute the critical Rayleigh number and the corresponding wave number. The stability of the system characterized by a correction Rayleigh number is calculated as a function of the concentration Rayleigh number, porosity, Lewis number, heat capacity ratio, Vadász number, viscosity variation parameter, conductivity variation parameter and frequency of modulation. It is found that the low frequency symmetric thermal modulation is destabilizing while moderate and high frequency symmetric modulation is always stabilizing. The nanofluid is found to have more stabilizing effect when compared to regular fluid. The asymmetric modulation and lower wall temperature modulation is stabilizing for all frequencies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Conference: international mechanical engineering congress and exhibition, San Francisco, CA (United States), 12–17 Nov 1995, ASME, San Francisco pp 99–105 Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Conference: international mechanical engineering congress and exhibition, San Francisco, CA (United States), 12–17 Nov 1995, ASME, San Francisco pp 99–105
2.
Zurück zum Zitat Keblinski P, Prasher R, Eapen J (2008) Thermal conductance of nanofluids: is the controversy over. Nanopart Res 10:1089CrossRef Keblinski P, Prasher R, Eapen J (2008) Thermal conductance of nanofluids: is the controversy over. Nanopart Res 10:1089CrossRef
3.
Zurück zum Zitat Yu W, France DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng 29:432CrossRefADS Yu W, France DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng 29:432CrossRefADS
4.
Zurück zum Zitat Maxwell JC (1873) Electricity and magnetism. Clarendon Press, Oxford Maxwell JC (1873) Electricity and magnetism. Clarendon Press, Oxford
5.
Zurück zum Zitat Goldstein RJ, Joseph DD, Pui DH (2000) Convective heat transport in nanofluids, proposal. Faculty of Aerospace Engineering and Mechanics, University of Minnesota, Minnesota Goldstein RJ, Joseph DD, Pui DH (2000) Convective heat transport in nanofluids, proposal. Faculty of Aerospace Engineering and Mechanics, University of Minnesota, Minnesota
6.
Zurück zum Zitat Davis SH (1976) The stability of time periodic flows. Annu Rev Fluid Mech 8:57–74CrossRefADS Davis SH (1976) The stability of time periodic flows. Annu Rev Fluid Mech 8:57–74CrossRefADS
7.
Zurück zum Zitat Venezian G (1969) Effect of modulation on the onset of thermal convection. J Fluid Mech 35:243–254CrossRefADSMATH Venezian G (1969) Effect of modulation on the onset of thermal convection. J Fluid Mech 35:243–254CrossRefADSMATH
8.
Zurück zum Zitat Rosenblat S, Herbert DM (1970) Low frequency modulation of thermal instability. J Fluid Mech 43:385–389CrossRefADSMATH Rosenblat S, Herbert DM (1970) Low frequency modulation of thermal instability. J Fluid Mech 43:385–389CrossRefADSMATH
9.
Zurück zum Zitat Rosenblat S, Tanaka GA (1971) Modulation of thermal convection instability. Phys Fluids 14:1319–1322CrossRefADSMATH Rosenblat S, Tanaka GA (1971) Modulation of thermal convection instability. Phys Fluids 14:1319–1322CrossRefADSMATH
11.
Zurück zum Zitat Caltagirone JP (1976) Stabilit´e d’une couche poreuse horizontale soumise a des conditions aux limite p´eriodiques. Int J Heat Mass Transf 19:815–820CrossRefMATH Caltagirone JP (1976) Stabilit´e d’une couche poreuse horizontale soumise a des conditions aux limite p´eriodiques. Int J Heat Mass Transf 19:815–820CrossRefMATH
12.
Zurück zum Zitat Rudraiah N, Malashetty MS (1990) Effect of modulation on the onset of convection in a sparsely packed porous layer. ASME J Heat Transf 122:685–689CrossRef Rudraiah N, Malashetty MS (1990) Effect of modulation on the onset of convection in a sparsely packed porous layer. ASME J Heat Transf 122:685–689CrossRef
13.
Zurück zum Zitat Malashetty MS, Wadi Veeranna S (1999) Rayleigh–Benard convection subjected to time dependent wall temperature in a fluid saturated porous layer. Fluid Dyn Res 24:293–308CrossRefADS Malashetty MS, Wadi Veeranna S (1999) Rayleigh–Benard convection subjected to time dependent wall temperature in a fluid saturated porous layer. Fluid Dyn Res 24:293–308CrossRefADS
14.
Zurück zum Zitat Finucane RG, Kelly RE (1976) Onset of instability in a fluid layer heated sinusoidally from below. Int J Heat Mass Transf 19:71–85CrossRefADSMATH Finucane RG, Kelly RE (1976) Onset of instability in a fluid layer heated sinusoidally from below. Int J Heat Mass Transf 19:71–85CrossRefADSMATH
15.
Zurück zum Zitat Niemela JJ, Donnelly RJ (1987) Externally modulation of Rayleigh–Benard convection. Phys Rev Lett 59:2431–2434CrossRefADS Niemela JJ, Donnelly RJ (1987) Externally modulation of Rayleigh–Benard convection. Phys Rev Lett 59:2431–2434CrossRefADS
16.
Zurück zum Zitat Schmitt S, Lucke M (1991) Amplitude equation for modulated Rayleigh–Benard convection. Phys Rev A 44:4986–5002CrossRefADS Schmitt S, Lucke M (1991) Amplitude equation for modulated Rayleigh–Benard convection. Phys Rev A 44:4986–5002CrossRefADS
17.
Zurück zum Zitat Or AC, Kelly RE (1999) Time modulated convection with zero mean temperature gradient. Phys Rev E 60:1741–1747CrossRefADS Or AC, Kelly RE (1999) Time modulated convection with zero mean temperature gradient. Phys Rev E 60:1741–1747CrossRefADS
18.
Zurück zum Zitat Or AC (2001) Onset condition of modulated Rayleigh–Benard at low frequency. Phys Rev E 64:2011–2013CrossRef Or AC (2001) Onset condition of modulated Rayleigh–Benard at low frequency. Phys Rev E 64:2011–2013CrossRef
19.
Zurück zum Zitat Nield DA, Kuznetsov AV (2012) The onset of convection in a layer of a porous medium saturated by a nanofluid: effects of conductivity and viscosity variation and cross-diffusion. Transp Porous Media 92:837–846CrossRefMathSciNet Nield DA, Kuznetsov AV (2012) The onset of convection in a layer of a porous medium saturated by a nanofluid: effects of conductivity and viscosity variation and cross-diffusion. Transp Porous Media 92:837–846CrossRefMathSciNet
20.
Zurück zum Zitat Tiwari RK, Das MK (2007) Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf 50:2002–2018CrossRefMATH Tiwari RK, Das MK (2007) Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf 50:2002–2018CrossRefMATH
21.
Zurück zum Zitat Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571–581CrossRefADS Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571–581CrossRefADS
22.
Zurück zum Zitat Maxwell JC (1904) A treatise on electricity and magnetism, 2nd edn. Oxford University Press, Cambridge Maxwell JC (1904) A treatise on electricity and magnetism, 2nd edn. Oxford University Press, Cambridge
25.
Zurück zum Zitat Umavathi JC (2013) Effect of ton on the onset of convection in a porous medium layer saturated by a nanofluid. Transp Porous Media 98:59–79CrossRefMathSciNet Umavathi JC (2013) Effect of ton on the onset of convection in a porous medium layer saturated by a nanofluid. Transp Porous Media 98:59–79CrossRefMathSciNet
26.
Zurück zum Zitat Malashetty MS, Basavaraja D (2002) Rayleigh–Benard convection subject to time dependent wall temperature in a fluid saturated anisotropic porous medium. Heat Mass Transf J 38:551–565CrossRefADS Malashetty MS, Basavaraja D (2002) Rayleigh–Benard convection subject to time dependent wall temperature in a fluid saturated anisotropic porous medium. Heat Mass Transf J 38:551–565CrossRefADS
27.
Zurück zum Zitat Malashetty MS, Mahantesh Swamy (2007) Combined effect of thermal modulation on the onset of stationary convection in a porous layer. Transp Porous Media 69:313–330CrossRefMathSciNet Malashetty MS, Mahantesh Swamy (2007) Combined effect of thermal modulation on the onset of stationary convection in a porous layer. Transp Porous Media 69:313–330CrossRefMathSciNet
28.
Zurück zum Zitat Umavathi JC, Mohite MB (2014) The onset of convection in a nanofluid saturated porous layer using Darcy model with cross diffusion. Meccanica 49:1159–1175CrossRefMATHMathSciNet Umavathi JC, Mohite MB (2014) The onset of convection in a nanofluid saturated porous layer using Darcy model with cross diffusion. Meccanica 49:1159–1175CrossRefMATHMathSciNet
Metadaten
Titel
Rayleigh–Benard convection subject to time dependent wall temperature in a porous medium layer saturated by a nanofluid
verfasst von
J. C. Umavathi
Publikationsdatum
01.04.2015
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 4/2015
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-014-0076-x

Weitere Artikel der Ausgabe 4/2015

Meccanica 4/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.