Skip to main content
Erschienen in: Rare Metals 5/2020

28.08.2019

Recent progress in thermal/environmental barrier coatings and their corrosion resistance

verfasst von: Hong-Fei Chen, Chi Zhang, Yu-Chen Liu, Peng Song, Wen-Xian Li, Guang Yang, Bin Liu

Erschienen in: Rare Metals | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermal/environmental barrier coatings (T/EBCs) play important roles in jet and/or gas turbine engines to protect the Ni-based superalloys and/or ceramic matrix composite substrates from the high-temperature airflow damage. Great efforts have been contributed to searching for enhanced T/EBC materials to improve the efficiency of the engines, which is the key of improving thrust-to-weight ratio and energy saving. The practical candidates, rare earth-contained materials, are widely used for T/EBCs in gas turbines due to their excellent properties such as low thermal conductivity, high melting point, high-temperature strength and durability as exhibited in yttria-stabilized zirconia, pyrochlore oxides and rare earth silicates. In addition to the intrinsic properties, the microstructures obtained by different synthesis processes and the service performances, as well as the underlying failure mechanism, are also significant to this specific application. However, the main challenges for T/EBCs developments are T/EBC materials selection with balanced properties and their anti-corrosion performances at higher operating temperature. In this review, we summarized the progress in their fabrication techniques and mechanical/thermal properties of typically rare earth-contained T/EBCs, together with their anti-corrosion performance under the condition of molten salts or oxides (such as, Na2SO4, V2O5 and NaVO3), calcium–magnesium–alumina–silicate (CMAS) and high-temperature water vapor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Padture NP. Advanced structural ceramics in aerospace propulsion. Nat Mater. 2016;15(8):804.CrossRef Padture NP. Advanced structural ceramics in aerospace propulsion. Nat Mater. 2016;15(8):804.CrossRef
[3]
Zurück zum Zitat Liu B, Liu Y, Zhu C, Xiang H, Chen H, Sun L, Gao Y, Zhou Y. Advances on strategies for searching for next generation thermal barrier coating materials. J Mater Sci Technol. 2018;35(5):833.CrossRef Liu B, Liu Y, Zhu C, Xiang H, Chen H, Sun L, Gao Y, Zhou Y. Advances on strategies for searching for next generation thermal barrier coating materials. J Mater Sci Technol. 2018;35(5):833.CrossRef
[4]
Zurück zum Zitat Clarke DR, Oechsner M, Padture NP. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012;37(10):891.CrossRef Clarke DR, Oechsner M, Padture NP. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012;37(10):891.CrossRef
[5]
Zurück zum Zitat Li SL, Qi HY, Yang XG. Oxidation-induced damage of an uncoated and coated nickel-based superalloy under simulated gas environment. Rare Met. 2018;37(3):204.CrossRef Li SL, Qi HY, Yang XG. Oxidation-induced damage of an uncoated and coated nickel-based superalloy under simulated gas environment. Rare Met. 2018;37(3):204.CrossRef
[6]
Zurück zum Zitat Chen H, Liu Y, Gao Y, Tao S, Luo H. Design, preparation, and characterization of graded YSZ/La2Zr2O7 thermal barrier coatings. J Am Ceram Soc. 2010;93(6):1732. Chen H, Liu Y, Gao Y, Tao S, Luo H. Design, preparation, and characterization of graded YSZ/La2Zr2O7 thermal barrier coatings. J Am Ceram Soc. 2010;93(6):1732.
[7]
Zurück zum Zitat Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science. 2002;296(5566):280.CrossRef Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science. 2002;296(5566):280.CrossRef
[8]
Zurück zum Zitat Schulz U, Saruhan B, Fritscher K, Leyens C. Review on advanced EB-PVD ceramic topcoats for TBC applications. Int J Appl Ceram Technol. 2004;1(4):302.CrossRef Schulz U, Saruhan B, Fritscher K, Leyens C. Review on advanced EB-PVD ceramic topcoats for TBC applications. Int J Appl Ceram Technol. 2004;1(4):302.CrossRef
[9]
Zurück zum Zitat Mohan P, Yuan B, Patterson T, Desai V, Sohn YH. Degradation of yttria stabilized zirconia thermal barrier coatings by molten CMAS (CaO–MgO–Al2O3–SiO2) deposits. Mater Sci Forum. 2008;595–598:207.CrossRef Mohan P, Yuan B, Patterson T, Desai V, Sohn YH. Degradation of yttria stabilized zirconia thermal barrier coatings by molten CMAS (CaO–MgO–Al2O3–SiO2) deposits. Mater Sci Forum. 2008;595–598:207.CrossRef
[10]
Zurück zum Zitat Mahade S, Curry N, Björklund S, Markocsan N, Nylén P, Vaßen R. Functional performance of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings deposited by suspension plasma spray. Surf Coat Technol. 2017;318:208.CrossRef Mahade S, Curry N, Björklund S, Markocsan N, Nylén P, Vaßen R. Functional performance of Gd2Zr2O7/YSZ multi-layered thermal barrier coatings deposited by suspension plasma spray. Surf Coat Technol. 2017;318:208.CrossRef
[11]
Zurück zum Zitat Goto T. A review: Structural oxide coatings by laser chemical vapor deposition. J Wuhan Univ Technol Mater Sci Ed. 2016;31(1):1.CrossRef Goto T. A review: Structural oxide coatings by laser chemical vapor deposition. J Wuhan Univ Technol Mater Sci Ed. 2016;31(1):1.CrossRef
[12]
Zurück zum Zitat Hospach A, Mauer G, Vaßen R, Stöver D. Columnar-structured thermal barrier coatings (TBCs) by thin film low-pressure plasma spraying (LPPS-TF). J Therm Spray Technol. 2011;20(1–2):116.CrossRef Hospach A, Mauer G, Vaßen R, Stöver D. Columnar-structured thermal barrier coatings (TBCs) by thin film low-pressure plasma spraying (LPPS-TF). J Therm Spray Technol. 2011;20(1–2):116.CrossRef
[13]
Zurück zum Zitat Cao XQ, Vassen R, Stoever D. Ceramic materials for thermal barrier coatings. J Eur Ceram Soc. 2004;24(1):1.CrossRef Cao XQ, Vassen R, Stoever D. Ceramic materials for thermal barrier coatings. J Eur Ceram Soc. 2004;24(1):1.CrossRef
[14]
Zurück zum Zitat Krämer S, Yang J, Levi CG. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts. J Am Ceram Soc. 2010;91(2):576.CrossRef Krämer S, Yang J, Levi CG. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts. J Am Ceram Soc. 2010;91(2):576.CrossRef
[15]
Zurück zum Zitat Zhang HS, Sun K, Xu Q, Wang FC, Liu L, Wei Y, Chen XG. Thermophysical properties of Sm2(Zr1−xCex)2O7 ceramics. Rare Met. 2009;28(3):226.CrossRef Zhang HS, Sun K, Xu Q, Wang FC, Liu L, Wei Y, Chen XG. Thermophysical properties of Sm2(Zr1−xCex)2O7 ceramics. Rare Met. 2009;28(3):226.CrossRef
[16]
Zurück zum Zitat Vaßen R, Jarligo MO, Steinke T, Mack DE, Stöver D. Overview on advanced thermal barrier coatings. Surf Coat Technol. 2010;205(4):938.CrossRef Vaßen R, Jarligo MO, Steinke T, Mack DE, Stöver D. Overview on advanced thermal barrier coatings. Surf Coat Technol. 2010;205(4):938.CrossRef
[17]
Zurück zum Zitat Liu Y, Cooper VR, Wang B, Xiang H, Li Q, Gao Y, Yang J, Zhou Y, Liu B. Discovery of ABO3 perovskites as thermal barrier coatings through high-throughput first principles calculations. Mater Res Lett. 2019;7(4):145.CrossRef Liu Y, Cooper VR, Wang B, Xiang H, Li Q, Gao Y, Yang J, Zhou Y, Liu B. Discovery of ABO3 perovskites as thermal barrier coatings through high-throughput first principles calculations. Mater Res Lett. 2019;7(4):145.CrossRef
[18]
Zurück zum Zitat Chen L, Jiang Y, Chong X, Feng J. Synthesis and thermophysical properties of RETa3O9 (RE = Ce, Nd, Sm, Eu, Gd, Dy, Er) as promising thermal barrier coatings. J Am Ceram Soc. 2018;101(3):1266.CrossRef Chen L, Jiang Y, Chong X, Feng J. Synthesis and thermophysical properties of RETa3O9 (RE = Ce, Nd, Sm, Eu, Gd, Dy, Er) as promising thermal barrier coatings. J Am Ceram Soc. 2018;101(3):1266.CrossRef
[19]
Zurück zum Zitat Yuan J, Sun J, Wang J, Zhang H, Dong S, Jiang J, Deng L, Zhou X, Cao X. SrCeO3 as a novel thermal barrier coating candidate for high-temperature applications. J Alloys Compd. 2018;740:519.CrossRef Yuan J, Sun J, Wang J, Zhang H, Dong S, Jiang J, Deng L, Zhou X, Cao X. SrCeO3 as a novel thermal barrier coating candidate for high-temperature applications. J Alloys Compd. 2018;740:519.CrossRef
[20]
Zurück zum Zitat Chen L, Wu P, Song P, Feng J. Potential thermal barrier coating materials: RE3NbO7 (RE = La, Nd, Sm, Eu, Gd, Dy) ceramics. J Am Ceram Soc. 2018;101(10):4503.CrossRef Chen L, Wu P, Song P, Feng J. Potential thermal barrier coating materials: RE3NbO7 (RE = La, Nd, Sm, Eu, Gd, Dy) ceramics. J Am Ceram Soc. 2018;101(10):4503.CrossRef
[21]
Zurück zum Zitat Chen H, Gao Y, Liu Y, Luo H. Hydrothermal synthesis of ytterbium silicate nanoparticles. Inorg Chem. 2010;49(4):1942.CrossRef Chen H, Gao Y, Liu Y, Luo H. Hydrothermal synthesis of ytterbium silicate nanoparticles. Inorg Chem. 2010;49(4):1942.CrossRef
[22]
Zurück zum Zitat Tang X, Gao Y, Chen H, Luo H. Hydrothermal synthesis of lutetium disilicate nanoparticles. J Solid State Chem. 2012;188:38.CrossRef Tang X, Gao Y, Chen H, Luo H. Hydrothermal synthesis of lutetium disilicate nanoparticles. J Solid State Chem. 2012;188:38.CrossRef
[23]
Zurück zum Zitat Ganvir A, Joshi S, Markocsan N, Vassen R. Tailoring columnar microstructure of axial suspension plasma sprayed TBCs for superior thermal shock performance. Mater Des. 2018;144:192.CrossRef Ganvir A, Joshi S, Markocsan N, Vassen R. Tailoring columnar microstructure of axial suspension plasma sprayed TBCs for superior thermal shock performance. Mater Des. 2018;144:192.CrossRef
[24]
Zurück zum Zitat Zhou X, He L, Cao X, Xu Z, Mu R, Sun J, Yuan J, Zou B. La2(Zr0.7Ce0.3)2O7 thermal barrier coatings prepared by electron beam-physical vapor deposition that are resistant to high temperature attack by molten silicate. Corros Sci. 2016;115:143.CrossRef Zhou X, He L, Cao X, Xu Z, Mu R, Sun J, Yuan J, Zou B. La2(Zr0.7Ce0.3)2O7 thermal barrier coatings prepared by electron beam-physical vapor deposition that are resistant to high temperature attack by molten silicate. Corros Sci. 2016;115:143.CrossRef
[25]
Zurück zum Zitat Liu J, Zhang L, Liu Q, Cheng L, Wang Y. Structure design and fabrication of environmental barrier coatings for crack resistance. J Eur Ceram Soc. 2014;34(8):2005.CrossRef Liu J, Zhang L, Liu Q, Cheng L, Wang Y. Structure design and fabrication of environmental barrier coatings for crack resistance. J Eur Ceram Soc. 2014;34(8):2005.CrossRef
[26]
Zurück zum Zitat Escudero A, Alba MD, Becerro AI. Polymorphism in the Sc2Si2O7–Y2Si2O7 system. J Solid State Chem. 2007;180(4):1436.CrossRef Escudero A, Alba MD, Becerro AI. Polymorphism in the Sc2Si2O7–Y2Si2O7 system. J Solid State Chem. 2007;180(4):1436.CrossRef
[27]
Zurück zum Zitat Poerschke DL, Jackson RW, Levi CG. Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions. Annu Rev Mater Res. 2017;47(1):297.CrossRef Poerschke DL, Jackson RW, Levi CG. Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions. Annu Rev Mater Res. 2017;47(1):297.CrossRef
[28]
Zurück zum Zitat Liu B, Wang J, Li F, Wang J, Zhou Y. Mechanism of mono-vacancy and oxygen permeability in Y2SiO5 orthosilicate studied by first-principles calculations. J Am Ceram Soc. 2012;95(3):1093. Liu B, Wang J, Li F, Wang J, Zhou Y. Mechanism of mono-vacancy and oxygen permeability in Y2SiO5 orthosilicate studied by first-principles calculations. J Am Ceram Soc. 2012;95(3):1093.
[29]
Zurück zum Zitat Feng J, Xiao B, Zhou R, Pan W. Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE = La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations. Acta Mater. 2013;61(19):7364.CrossRef Feng J, Xiao B, Zhou R, Pan W. Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE = La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations. Acta Mater. 2013;61(19):7364.CrossRef
[30]
Zurück zum Zitat Liu B, Wang J, Li F, Sun L, Wang J, Zhou Y. Investigation of native point defects and nonstoichiometry mechanisms of two yttrium silicates by first-principles calculations. J Am Ceram Soc. 2013;96(10):3304. Liu B, Wang J, Li F, Sun L, Wang J, Zhou Y. Investigation of native point defects and nonstoichiometry mechanisms of two yttrium silicates by first-principles calculations. J Am Ceram Soc. 2013;96(10):3304.
[31]
Zurück zum Zitat Feng J, Shian S, Xiao B, Clarke DR. First-principles calculations of the high-temperature phase transformation in yttrium tantalate. Phys Rev B. 2014;90(9):094102.CrossRef Feng J, Shian S, Xiao B, Clarke DR. First-principles calculations of the high-temperature phase transformation in yttrium tantalate. Phys Rev B. 2014;90(9):094102.CrossRef
[32]
Zurück zum Zitat Liu Y, Liu B, Xiang H, Zhou Y, Nian H, Chen H, Yang G, Gao Y. Theoretical investigation of anisotropic mechanical and thermal properties of ABO3 (A = Sr, Ba; B = Ti, Zr, Hf) perovskites. J Am Ceram Soc. 2018;101(8):3527.CrossRef Liu Y, Liu B, Xiang H, Zhou Y, Nian H, Chen H, Yang G, Gao Y. Theoretical investigation of anisotropic mechanical and thermal properties of ABO3 (A = Sr, Ba; B = Ti, Zr, Hf) perovskites. J Am Ceram Soc. 2018;101(8):3527.CrossRef
[33]
Zurück zum Zitat Liu Y, Zhang W, Wang B, Sun L, Li F, Xue Z, Zhou G, Liu B, Nian H. Theoretical and experimental investigations on high temperature mechanical and thermal properties of BaZrO3. Ceram Int. 2018;44(14):16475.CrossRef Liu Y, Zhang W, Wang B, Sun L, Li F, Xue Z, Zhou G, Liu B, Nian H. Theoretical and experimental investigations on high temperature mechanical and thermal properties of BaZrO3. Ceram Int. 2018;44(14):16475.CrossRef
[34]
Zurück zum Zitat Asadikiya M, Foroughi P, Zhong Y. Re-evaluation of the thermodynamic equilibria on the zirconia-rich side of the ZrO2–YO1.5 system. Calphad. 2018;61:264.CrossRef Asadikiya M, Foroughi P, Zhong Y. Re-evaluation of the thermodynamic equilibria on the zirconia-rich side of the ZrO2–YO1.5 system. Calphad. 2018;61:264.CrossRef
[35]
Zurück zum Zitat Yang J, Shahid M, Wan C, Jing F, Pan W. Anisotropy in elasticity, sound velocities and minimum thermal conductivity of zirconia from first-principles calculations. J Eur Ceram Soc. 2017;37(2):689.CrossRef Yang J, Shahid M, Wan C, Jing F, Pan W. Anisotropy in elasticity, sound velocities and minimum thermal conductivity of zirconia from first-principles calculations. J Eur Ceram Soc. 2017;37(2):689.CrossRef
[36]
Zurück zum Zitat Bakan E, Mack DE, Mauer G, Vaßen R, Troczynski T. Gadolinium zirconate/YSZ thermal barrier coatings: plasma spraying, microstructure, and thermal cycling behavior. J Am Ceram Soc. 2014;97(12):4045.CrossRef Bakan E, Mack DE, Mauer G, Vaßen R, Troczynski T. Gadolinium zirconate/YSZ thermal barrier coatings: plasma spraying, microstructure, and thermal cycling behavior. J Am Ceram Soc. 2014;97(12):4045.CrossRef
[37]
Zurück zum Zitat Wang C, Wang Y, Fan S, You Y, Wang L, Yang C, Sun X, Li X. Optimized functionally graded La2Zr2O7/8YSZ thermal barrier coatings fabricated by suspension plasma spraying. J Alloys Compd. 2015;649:1182.CrossRef Wang C, Wang Y, Fan S, You Y, Wang L, Yang C, Sun X, Li X. Optimized functionally graded La2Zr2O7/8YSZ thermal barrier coatings fabricated by suspension plasma spraying. J Alloys Compd. 2015;649:1182.CrossRef
[38]
Zurück zum Zitat Vargas Garcia JR, Goto T. Thermal barrier coatings produced by chemical vapor deposition. Sci Technol Adv Mater. 2003;4(4):397.CrossRef Vargas Garcia JR, Goto T. Thermal barrier coatings produced by chemical vapor deposition. Sci Technol Adv Mater. 2003;4(4):397.CrossRef
[39]
Zurück zum Zitat Drexler JM, Shinoda K, Ortiz AL, Li D, Vasiliev AL, Gledhill AD, Sampath S, Padture NP. Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Mater. 2010;58(20):6835.CrossRef Drexler JM, Shinoda K, Ortiz AL, Li D, Vasiliev AL, Gledhill AD, Sampath S, Padture NP. Air-plasma-sprayed thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Mater. 2010;58(20):6835.CrossRef
[40]
Zurück zum Zitat Drexler JM, Gledhill AD, Shinoda K, Vasiliev AL, Reddy KM, Sampath S, Padture NP. Jet engine coatings for resisting volcanic ash damage. Adv Mater. 2011;23(21):2419.CrossRef Drexler JM, Gledhill AD, Shinoda K, Vasiliev AL, Reddy KM, Sampath S, Padture NP. Jet engine coatings for resisting volcanic ash damage. Adv Mater. 2011;23(21):2419.CrossRef
[41]
Zurück zum Zitat Drexler JM, Ortiz AL, Padture NP. Composition effects of thermal barrier coating ceramics on their interaction with molten Ca–Mg–Al–silicate (CMAS) glass. Acta Mater. 2012;60(15):5437.CrossRef Drexler JM, Ortiz AL, Padture NP. Composition effects of thermal barrier coating ceramics on their interaction with molten Ca–Mg–Al–silicate (CMAS) glass. Acta Mater. 2012;60(15):5437.CrossRef
[42]
Zurück zum Zitat Yan K, Guo H-B, Peng H, Gong S-K. Oxidation behaviour of electron beam physical vapour deposition β-NiAlHf coatings at 1100 °C in dry and humid atmospheres. Rare Met. 2016;35(7):513.CrossRef Yan K, Guo H-B, Peng H, Gong S-K. Oxidation behaviour of electron beam physical vapour deposition β-NiAlHf coatings at 1100 °C in dry and humid atmospheres. Rare Met. 2016;35(7):513.CrossRef
[43]
Zurück zum Zitat Evans AG, Clarke DR, Levi CG. The influence of oxides on the performance of advanced gas turbines. J Eur Ceram Soc. 2008;28(7):1405.CrossRef Evans AG, Clarke DR, Levi CG. The influence of oxides on the performance of advanced gas turbines. J Eur Ceram Soc. 2008;28(7):1405.CrossRef
[44]
Zurück zum Zitat Levi CG, Hutchinson JW, Vidal-Sétif M-H, Johnson CA. Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull. 2012;37(10):932.CrossRef Levi CG, Hutchinson JW, Vidal-Sétif M-H, Johnson CA. Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull. 2012;37(10):932.CrossRef
[45]
Zurück zum Zitat Wu RT, Osawa M, Yokokawa T, Kawagishi K, Harada H. Degradation mechanisms of an advanced jet engine service-retired TBC component. J Solid Mech Mater Eng. 2010;4(2):119.CrossRef Wu RT, Osawa M, Yokokawa T, Kawagishi K, Harada H. Degradation mechanisms of an advanced jet engine service-retired TBC component. J Solid Mech Mater Eng. 2010;4(2):119.CrossRef
[46]
Zurück zum Zitat Evans AG, Mumm DR, Hutchinson JW, Meier GH, Pettit FS. Mechanisms controlling the durability of thermal barrier coatings. Prog Mater Sci. 2001;46(5):505.CrossRef Evans AG, Mumm DR, Hutchinson JW, Meier GH, Pettit FS. Mechanisms controlling the durability of thermal barrier coatings. Prog Mater Sci. 2001;46(5):505.CrossRef
[47]
Zurück zum Zitat Mercer C, Faulhaber S, Evans AG, Darolia R. A delamination mechanism for thermal barrier coatings subject to calcium–magnesium–alumino-silicate (CMAS) infiltration. Acta Mater. 2005;53(4):1029.CrossRef Mercer C, Faulhaber S, Evans AG, Darolia R. A delamination mechanism for thermal barrier coatings subject to calcium–magnesium–alumino-silicate (CMAS) infiltration. Acta Mater. 2005;53(4):1029.CrossRef
[48]
Zurück zum Zitat Krämer S, Yang J, Levi CG, Johnson CA. Thermomechanical interaction of thermal barrier coatings with molten CaO–MgO–Al2O3–SiO2 (CMAS) deposits. J Am Ceram Soc. 2006;89(10):3167.CrossRef Krämer S, Yang J, Levi CG, Johnson CA. Thermomechanical interaction of thermal barrier coatings with molten CaO–MgO–Al2O3–SiO2 (CMAS) deposits. J Am Ceram Soc. 2006;89(10):3167.CrossRef
[49]
Zurück zum Zitat Zhang XF, Zhou KS, Xu W, Chen BY, Song JB, Liu M. In situ synthesis of α-alumina layer on thermal barrier coating for protection against CMAS (CaO–MgO–Al2O3–SiO2) corrosion. Surf Coat Technol. 2015;261:54.CrossRef Zhang XF, Zhou KS, Xu W, Chen BY, Song JB, Liu M. In situ synthesis of α-alumina layer on thermal barrier coating for protection against CMAS (CaO–MgO–Al2O3–SiO2) corrosion. Surf Coat Technol. 2015;261:54.CrossRef
[50]
Zurück zum Zitat Zhao H, Levi CG, Wadley HNG. Molten silicate interactions with thermal barrier coatings. Surf Coat Technol. 2014;251:74.CrossRef Zhao H, Levi CG, Wadley HNG. Molten silicate interactions with thermal barrier coatings. Surf Coat Technol. 2014;251:74.CrossRef
[51]
Zurück zum Zitat Xu J, Chen HF, Yang G, Luo HJ, Gao YF. Elements diffusion and phase transitions in Yb/Y co-doped zirconia ceramic under molten-salt corrosive environment. Chin J Mater Res. 2006;30(8):627. Xu J, Chen HF, Yang G, Luo HJ, Gao YF. Elements diffusion and phase transitions in Yb/Y co-doped zirconia ceramic under molten-salt corrosive environment. Chin J Mater Res. 2006;30(8):627.
[52]
Zurück zum Zitat Susnitzky DW, Hertl W, Carter CB. Destabilization of zirconia thermal barriers in the presence of V2O5. J Am Ceram Soc. 1988;71(11):992.CrossRef Susnitzky DW, Hertl W, Carter CB. Destabilization of zirconia thermal barriers in the presence of V2O5. J Am Ceram Soc. 1988;71(11):992.CrossRef
[53]
Zurück zum Zitat Park SY, Kim JH, Kim MC, Song HS, Park CG. Microscopic observation of degradation behavior in yttria and ceria stabilized zirconia thermal barrier coatings under hot corrosion. Surf Coat Technol. 2005;190(2):357.CrossRef Park SY, Kim JH, Kim MC, Song HS, Park CG. Microscopic observation of degradation behavior in yttria and ceria stabilized zirconia thermal barrier coatings under hot corrosion. Surf Coat Technol. 2005;190(2):357.CrossRef
[54]
Zurück zum Zitat Nejati M, Rahimipour MR, Mobasherpour I. Evaluation of hot corrosion behavior of CSZ, CSZ/micro Al2O3 and CSZ/nano Al2O3 plasma sprayed thermal barrier coatings. Ceram Int. 2014;40(3):4579.CrossRef Nejati M, Rahimipour MR, Mobasherpour I. Evaluation of hot corrosion behavior of CSZ, CSZ/micro Al2O3 and CSZ/nano Al2O3 plasma sprayed thermal barrier coatings. Ceram Int. 2014;40(3):4579.CrossRef
[55]
Zurück zum Zitat Guo L, Yan Z, Yu J, Zhang C, Li M, Ye F, Ji V. Hot corrosion behavior of TiO2 doped, Yb2O3 stabilized zirconia exposed to V2O5 + Na2SO4 molten salt at 700–1000 °C. Ceram Int. 2018;44(1):261.CrossRef Guo L, Yan Z, Yu J, Zhang C, Li M, Ye F, Ji V. Hot corrosion behavior of TiO2 doped, Yb2O3 stabilized zirconia exposed to V2O5 + Na2SO4 molten salt at 700–1000 °C. Ceram Int. 2018;44(1):261.CrossRef
[56]
Zurück zum Zitat Batista C, Portinha A, Ribeiro RM, Teixeira V, Oliveira CR. Evaluation of laser-glazed plasma-sprayed thermal barrier coatings under high temperature exposure to molten salts. Surf Coat Technol. 2006;200(24):6783.CrossRef Batista C, Portinha A, Ribeiro RM, Teixeira V, Oliveira CR. Evaluation of laser-glazed plasma-sprayed thermal barrier coatings under high temperature exposure to molten salts. Surf Coat Technol. 2006;200(24):6783.CrossRef
[57]
Zurück zum Zitat Tsai PC, Lee JH, Hsu CS. Hot corrosion behavior of laser-glazed plasma-sprayed yttria-stabilized zirconia thermal barrier coatings in the presence of V2O5. Surf Coat Technol. 2007;201(9):5143.CrossRef Tsai PC, Lee JH, Hsu CS. Hot corrosion behavior of laser-glazed plasma-sprayed yttria-stabilized zirconia thermal barrier coatings in the presence of V2O5. Surf Coat Technol. 2007;201(9):5143.CrossRef
[58]
Zurück zum Zitat Doleker KM, Ahlatci H, Karaoglanli AC. Investigation of isothermal oxidation behavior of thermal barrier coatings (TBCs) consisting of YSZ and multilayered YSZ/Gd2Zr2O7 ceramic layers. Oxid Met. 2017;88(1–2):109.CrossRef Doleker KM, Ahlatci H, Karaoglanli AC. Investigation of isothermal oxidation behavior of thermal barrier coatings (TBCs) consisting of YSZ and multilayered YSZ/Gd2Zr2O7 ceramic layers. Oxid Met. 2017;88(1–2):109.CrossRef
[59]
Zurück zum Zitat Mahade S, Curry N, Björklund S, Markocsan N, Nylén P. Thermal conductivity and thermal cyclic fatigue of multilayered Gd2Zr2O7/YSZ thermal barrier coatings processed by suspension plasma spray. Surf Coat Technol. 2015;283:329.CrossRef Mahade S, Curry N, Björklund S, Markocsan N, Nylén P. Thermal conductivity and thermal cyclic fatigue of multilayered Gd2Zr2O7/YSZ thermal barrier coatings processed by suspension plasma spray. Surf Coat Technol. 2015;283:329.CrossRef
[60]
Zurück zum Zitat Cao XQ, Vassen R, Stoever D. Ceramic materials for thermal barrier coatings. J Eur Ceram Soc. 2004;24(1):1.CrossRef Cao XQ, Vassen R, Stoever D. Ceramic materials for thermal barrier coatings. J Eur Ceram Soc. 2004;24(1):1.CrossRef
[61]
Zurück zum Zitat Vassen R, Stuke A, Stöver D. Recent developments in the field of thermal barrier coatings. J Therm Spray Technol. 2009;18(2):181.CrossRef Vassen R, Stuke A, Stöver D. Recent developments in the field of thermal barrier coatings. J Therm Spray Technol. 2009;18(2):181.CrossRef
[62]
Zurück zum Zitat Liu B, Wang JY, Zhou YC, Liao T, Li FZ. Theoretical elastic stiffness, structure stability and thermal conductivity of LaZrO pyrochlore. Acta Mater. 2007;55(9):2949.CrossRef Liu B, Wang JY, Zhou YC, Liao T, Li FZ. Theoretical elastic stiffness, structure stability and thermal conductivity of LaZrO pyrochlore. Acta Mater. 2007;55(9):2949.CrossRef
[63]
Zurück zum Zitat Yang L, Zhu C, Sheng Y, Nian H, Li Q, Song P, Lu W, Yang J, Liu B. Investigation of mechanical and thermal properties of rare earth pyrochlore oxides by first-principles calculations. J Am Ceram Soc. 2019;102(5):2830. Yang L, Zhu C, Sheng Y, Nian H, Li Q, Song P, Lu W, Yang J, Liu B. Investigation of mechanical and thermal properties of rare earth pyrochlore oxides by first-principles calculations. J Am Ceram Soc. 2019;102(5):2830.
[64]
Zurück zum Zitat Lehmann H, Pitzer D, Pracht G, Vassen R, Stöver D. Thermal conductivity and thermal expansion coefficients of lanthanum rare-earth-element zirconates system. J Am Ceram Soc. 2010;86(8):1338.CrossRef Lehmann H, Pitzer D, Pracht G, Vassen R, Stöver D. Thermal conductivity and thermal expansion coefficients of lanthanum rare-earth-element zirconates system. J Am Ceram Soc. 2010;86(8):1338.CrossRef
[65]
Zurück zum Zitat Subramanian MA, Aravamudan G, Rao GVS. Oxide pyrochlores—a review. Prog Solid State Chem. 1983;15(2):55.CrossRef Subramanian MA, Aravamudan G, Rao GVS. Oxide pyrochlores—a review. Prog Solid State Chem. 1983;15(2):55.CrossRef
[66]
Zurück zum Zitat Liu B, Wang JY, Li FZ, Zhou YC. Theoretical elastic stiffness, structural stability and thermal conductivity of La2T2O7 (T = Ge, Ti, Sn, Zr, Hf) pyrochlore. Acta Mater. 2010;58(13):4369.CrossRef Liu B, Wang JY, Li FZ, Zhou YC. Theoretical elastic stiffness, structural stability and thermal conductivity of La2T2O7 (T = Ge, Ti, Sn, Zr, Hf) pyrochlore. Acta Mater. 2010;58(13):4369.CrossRef
[67]
Zurück zum Zitat Feng J, Xiao B, Zhou R, Pan W. Thermal conductivity of rare earth zirconate pyrochlore from first principles. Scr Mater. 2013;68(9):727.CrossRef Feng J, Xiao B, Zhou R, Pan W. Thermal conductivity of rare earth zirconate pyrochlore from first principles. Scr Mater. 2013;68(9):727.CrossRef
[68]
Zurück zum Zitat Wu J, Wei X, Padture NP, Klemens PG, Gell M, García E, Miranzo P, Osendi MI. Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. J Am Ceram Soc. 2002;85(12):3031.CrossRef Wu J, Wei X, Padture NP, Klemens PG, Gell M, García E, Miranzo P, Osendi MI. Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating applications. J Am Ceram Soc. 2002;85(12):3031.CrossRef
[69]
Zurück zum Zitat Feng J, Xiao B, Zhou R, Pan W. Thermal expansion and conductivity of RE2Sn2O7 (RE = La, Nd, Sm, Gd, Er and Yb) pyrochlores. Scr Mater. 2013;69(5):401.CrossRef Feng J, Xiao B, Zhou R, Pan W. Thermal expansion and conductivity of RE2Sn2O7 (RE = La, Nd, Sm, Gd, Er and Yb) pyrochlores. Scr Mater. 2013;69(5):401.CrossRef
[70]
Zurück zum Zitat Feng J, Xiao B, Qu ZX, Zhou R, Pan W. Mechanical properties of rare earth stannate pyrochlores. Appl Phys Lett. 2011;99(20):201909.CrossRef Feng J, Xiao B, Qu ZX, Zhou R, Pan W. Mechanical properties of rare earth stannate pyrochlores. Appl Phys Lett. 2011;99(20):201909.CrossRef
[71]
Zurück zum Zitat Feng J, Xiao B, Wan CL, Qu ZX, Huang ZC, Chen JC, Zhou R, Pan W. Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore. Acta Mater. 2011;59(4):1742.CrossRef Feng J, Xiao B, Wan CL, Qu ZX, Huang ZC, Chen JC, Zhou R, Pan W. Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore. Acta Mater. 2011;59(4):1742.CrossRef
[72]
Zurück zum Zitat Shen Z, He L, Xu Z, Mu R, Huang G. Rare earth oxides stabilized La2Zr2O7 TBCs: EB-PVD, thermal conductivity and thermal cycling life. Surf Coat Technol. 2019;357:427.CrossRef Shen Z, He L, Xu Z, Mu R, Huang G. Rare earth oxides stabilized La2Zr2O7 TBCs: EB-PVD, thermal conductivity and thermal cycling life. Surf Coat Technol. 2019;357:427.CrossRef
[73]
Zurück zum Zitat Dwivedi G, Tan Y, Viswanathan V, Sampath S. Process-property relationship for air plasma-sprayed gadolinium zirconate coatings. J Therm Spray Technol. 2015;24(3):454.CrossRef Dwivedi G, Tan Y, Viswanathan V, Sampath S. Process-property relationship for air plasma-sprayed gadolinium zirconate coatings. J Therm Spray Technol. 2015;24(3):454.CrossRef
[74]
Zurück zum Zitat Zhu C, Liu Y, Wang D, Zhou Y, Yang G, Chen H, Gao Y, Liu B. Improved resistance of lanthanum zirconate coatings to calcium–magnesium–alumina–silicate corrosion through composition tailoring. Ceram Int. 2018;44(12):13908.CrossRef Zhu C, Liu Y, Wang D, Zhou Y, Yang G, Chen H, Gao Y, Liu B. Improved resistance of lanthanum zirconate coatings to calcium–magnesium–alumina–silicate corrosion through composition tailoring. Ceram Int. 2018;44(12):13908.CrossRef
[75]
Zurück zum Zitat Habibi MH, Wang L, Guo S. An investigation on hot corrosion resistance of plasma sprayed composite YSZ-Gd2Zr2O7 and Gd2Zr2O7 thermal barrier coatings in simulated turbine environment at 1050 °C. In: ASME 2012 International Mechanical Engineering Congress and Exposition; 2012. 905. Habibi MH, Wang L, Guo S. An investigation on hot corrosion resistance of plasma sprayed composite YSZ-Gd2Zr2O7 and Gd2Zr2O7 thermal barrier coatings in simulated turbine environment at 1050 °C. In: ASME 2012 International Mechanical Engineering Congress and Exposition; 2012. 905.
[76]
Zurück zum Zitat Yin Y, Ma W, Jin X, Li X, Bai Y, Jia R, Dong H. Hot corrosion behavior of the La2(Zr0.7Ce0.3)2O7 ceramic in molten V2O5 and a Na2SO4 + V2O5 salt mixture. J Alloys Compd. 2016;689:123.CrossRef Yin Y, Ma W, Jin X, Li X, Bai Y, Jia R, Dong H. Hot corrosion behavior of the La2(Zr0.7Ce0.3)2O7 ceramic in molten V2O5 and a Na2SO4 + V2O5 salt mixture. J Alloys Compd. 2016;689:123.CrossRef
[77]
Zurück zum Zitat Chen H, Gao Y, Tao S, Liu Y, Luo H. Thermophysical properties of lanthanum zirconate coating prepared by plasma spraying and the influence of post-annealing. J Alloys Compd. 2009;486(1):391.CrossRef Chen H, Gao Y, Tao S, Liu Y, Luo H. Thermophysical properties of lanthanum zirconate coating prepared by plasma spraying and the influence of post-annealing. J Alloys Compd. 2009;486(1):391.CrossRef
[78]
Zurück zum Zitat Goldstein HW, Walsh PN, White D. Rare earths. I. Vaporization of La2O3 and Nd2O3: dissociation energies of gaseous LaO and NdO. J Phys Chem. 1961;65(8):1400.CrossRef Goldstein HW, Walsh PN, White D. Rare earths. I. Vaporization of La2O3 and Nd2O3: dissociation energies of gaseous LaO and NdO. J Phys Chem. 1961;65(8):1400.CrossRef
[79]
Zurück zum Zitat Cao XQ, Vassen R, Jungen W, Schwartz S, Tietz F, Stöver D. Thermal stability of lanthanum zirconate plasma-sprayed coating. J Am Ceram Soc. 2010;84(9):2086.CrossRef Cao XQ, Vassen R, Jungen W, Schwartz S, Tietz F, Stöver D. Thermal stability of lanthanum zirconate plasma-sprayed coating. J Am Ceram Soc. 2010;84(9):2086.CrossRef
[80]
Zurück zum Zitat Saruhan B, Francois P, Fritscher K, Schulz U. EB-PVD processing of pyrochlore-structured La2Zr2O7-based TBCs. Surf Coat Technol. 2004;182(2):175.CrossRef Saruhan B, Francois P, Fritscher K, Schulz U. EB-PVD processing of pyrochlore-structured La2Zr2O7-based TBCs. Surf Coat Technol. 2004;182(2):175.CrossRef
[81]
Zurück zum Zitat Borom MP, Johnson CA, Peluso LA. Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings. Surf Coat Technol. 1996;86–87(96):116.CrossRef Borom MP, Johnson CA, Peluso LA. Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings. Surf Coat Technol. 1996;86–87(96):116.CrossRef
[82]
Zurück zum Zitat Gao L, Guo H, Gong S, Xu H. Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium–magnesium–alumina–silicate penetration. J Eur Ceram Soc. 2014;34(10):2553.CrossRef Gao L, Guo H, Gong S, Xu H. Plasma-sprayed La2Ce2O7 thermal barrier coatings against calcium–magnesium–alumina–silicate penetration. J Eur Ceram Soc. 2014;34(10):2553.CrossRef
[83]
Zurück zum Zitat Zheng C, Wu NQ, Singh J, Mao SX. Effect of Al2O3 overlay on hot-corrosion behavior of yttria-stabilized zirconia coating in molten sulfate–vanadate salt. Thin Solid Films. 2003;443(1):46. Zheng C, Wu NQ, Singh J, Mao SX. Effect of Al2O3 overlay on hot-corrosion behavior of yttria-stabilized zirconia coating in molten sulfate–vanadate salt. Thin Solid Films. 2003;443(1):46.
[84]
Zurück zum Zitat Yugeswaran S, Kobayashi A, Ananthapadmanabhan PV. Hot corrosion behaviors of gas tunnel type plasma sprayed La2Zr2O7 thermal barrier coatings. J Eur Ceram Soc. 2012;32(4):823.CrossRef Yugeswaran S, Kobayashi A, Ananthapadmanabhan PV. Hot corrosion behaviors of gas tunnel type plasma sprayed La2Zr2O7 thermal barrier coatings. J Eur Ceram Soc. 2012;32(4):823.CrossRef
[85]
Zurück zum Zitat Zhu C, Yang L, Zhang C, Yang G, Chen H, Li Q, Li F, Gao Y, Liu B. Influence of composition on molten sulfate–vanadate salt corrosion resistance of lanthanum zirconate coatings. Ceram Int. 2018;44(18):22911.CrossRef Zhu C, Yang L, Zhang C, Yang G, Chen H, Li Q, Li F, Gao Y, Liu B. Influence of composition on molten sulfate–vanadate salt corrosion resistance of lanthanum zirconate coatings. Ceram Int. 2018;44(18):22911.CrossRef
[86]
Zurück zum Zitat Eils NK, Mechnich P, Braue W. Effect of CMAS deposits on MOCVD coatings in the system Y2O3–ZrO2: phase relationships. J Am Ceram Soc. 2013;96(10):3333. Eils NK, Mechnich P, Braue W. Effect of CMAS deposits on MOCVD coatings in the system Y2O3–ZrO2: phase relationships. J Am Ceram Soc. 2013;96(10):3333.
[87]
Zurück zum Zitat Schulz U, Braue W. Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS (CaO–MgO–Al2O3–SiO2) and volcanic ash deposits. Surf Coat Technol. 2013;235:165.CrossRef Schulz U, Braue W. Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS (CaO–MgO–Al2O3–SiO2) and volcanic ash deposits. Surf Coat Technol. 2013;235:165.CrossRef
[88]
Zurück zum Zitat Habibi MH, Wang L, Guo SM. Evolution of hot corrosion resistance of YSZ, Gd2Zr2O7, and Gd2Zr2O7 + YSZ composite thermal barrier coatings in Na2SO4 + V2O5 at 1050 °C. J Eur Ceram Soc. 2012;32(8):1635.CrossRef Habibi MH, Wang L, Guo SM. Evolution of hot corrosion resistance of YSZ, Gd2Zr2O7, and Gd2Zr2O7 + YSZ composite thermal barrier coatings in Na2SO4 + V2O5 at 1050 °C. J Eur Ceram Soc. 2012;32(8):1635.CrossRef
[89]
Zurück zum Zitat Yang G, Mao X, Wang D, Chen H, Liu B, Cui Y, Luo H, Gao Y. Fabrication of columnar structured lanthanum zirconate films by laser CVD. J Am Ceram Soc. 2017;100(9):4232.CrossRef Yang G, Mao X, Wang D, Chen H, Liu B, Cui Y, Luo H, Gao Y. Fabrication of columnar structured lanthanum zirconate films by laser CVD. J Am Ceram Soc. 2017;100(9):4232.CrossRef
[90]
Zurück zum Zitat Wang D, Liu Y, Zhu C, Yang G, Liu B, Chen H, Cui Y, Luo H, Gao Y. Preparation of lanthanum zirconate films with a widely controllable La/Zr ratio by LCVD. Ceram Int. 2018;44(9):10621.CrossRef Wang D, Liu Y, Zhu C, Yang G, Liu B, Chen H, Cui Y, Luo H, Gao Y. Preparation of lanthanum zirconate films with a widely controllable La/Zr ratio by LCVD. Ceram Int. 2018;44(9):10621.CrossRef
[91]
Zurück zum Zitat Ogawa T, Otani N, Yokoi T, Fisher CAJ, Kuwabara A, Moriwake H, Yoshiya M, Kitaoka S, Takata M. Density functional study of the phase stability and Raman spectra of Yb2O3, Yb2SiO5 and Yb2Si2O7 under pressure. Phys Chem Chem Phys. 2018;20(24):16518.CrossRef Ogawa T, Otani N, Yokoi T, Fisher CAJ, Kuwabara A, Moriwake H, Yoshiya M, Kitaoka S, Takata M. Density functional study of the phase stability and Raman spectra of Yb2O3, Yb2SiO5 and Yb2Si2O7 under pressure. Phys Chem Chem Phys. 2018;20(24):16518.CrossRef
[92]
Zurück zum Zitat Opila EJ. Oxidation and volatilization of silica formers in water vapor. J Am Ceram Soc. 2003;86(8):1238.CrossRef Opila EJ. Oxidation and volatilization of silica formers in water vapor. J Am Ceram Soc. 2003;86(8):1238.CrossRef
[93]
Zurück zum Zitat Park DJ, Jung YI, Kim HG, Park JY, Koo YH. Oxidation behavior of silicon carbide at 1200 °C in both air and water-vapor-rich environments. Corros Sci. 2014;88:416.CrossRef Park DJ, Jung YI, Kim HG, Park JY, Koo YH. Oxidation behavior of silicon carbide at 1200 °C in both air and water-vapor-rich environments. Corros Sci. 2014;88:416.CrossRef
[94]
Zurück zum Zitat More KL, Tortorelli PF, Ferber MK, Keiser JR. Observations of accelerated silicon carbide recession by oxidation at high water-vapor pressures. J Am Ceram Soc. 2000;83(1):211.CrossRef More KL, Tortorelli PF, Ferber MK, Keiser JR. Observations of accelerated silicon carbide recession by oxidation at high water-vapor pressures. J Am Ceram Soc. 2000;83(1):211.CrossRef
[95]
Zurück zum Zitat Lee KN, Fox DS, Bansal NP. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. J Eur Ceram Soc. 2005;25(10):1705.CrossRef Lee KN, Fox DS, Bansal NP. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics. J Eur Ceram Soc. 2005;25(10):1705.CrossRef
[96]
Zurück zum Zitat Maier N, Nickel KG, Rixecker G. High temperature water vapour corrosion of rare earth disilicates (Y, Yb, Lu)2Si2O7 in the presence of Al(OH)3 impurities. J Eur Ceram Soc. 2007;27(7):2705.CrossRef Maier N, Nickel KG, Rixecker G. High temperature water vapour corrosion of rare earth disilicates (Y, Yb, Lu)2Si2O7 in the presence of Al(OH)3 impurities. J Eur Ceram Soc. 2007;27(7):2705.CrossRef
[97]
Zurück zum Zitat Bakan E, Marcano D, Zhou D, Sohn YJ, Mauer G, Vaßen R. Yb2Si2O7 environmental barrier coatings deposited by various thermal spray techniques: a preliminary comparative study. J Therm Spray Technol. 2017;26(1):1. Bakan E, Marcano D, Zhou D, Sohn YJ, Mauer G, Vaßen R. Yb2Si2O7 environmental barrier coatings deposited by various thermal spray techniques: a preliminary comparative study. J Therm Spray Technol. 2017;26(1):1.
[98]
Zurück zum Zitat Eaton HE, Linsey GD, More KL, Kimmel JB, Price JR, Miriyala N. EBC protection of SiC/SiC composites in the gas turbine combustion environment: continuing evaluation and refurbishment considerations. In: Proceedings of the ASME Turbo Expo: Power for Land, Sea, and Air, Munich; 2000. V004T02A018. Eaton HE, Linsey GD, More KL, Kimmel JB, Price JR, Miriyala N. EBC protection of SiC/SiC composites in the gas turbine combustion environment: continuing evaluation and refurbishment considerations. In: Proceedings of the ASME Turbo Expo: Power for Land, Sea, and Air, Munich; 2000. V004T02A018.
[99]
Zurück zum Zitat Al Nasiri N, Patra N, Horlait D, Jayaseelan DD, Lee WE, Smialek J. Thermal properties of rare-earth monosilicates for EBC on Si-based ceramic composites. J Am Ceram Soc. 2016;99(2):589.CrossRef Al Nasiri N, Patra N, Horlait D, Jayaseelan DD, Lee WE, Smialek J. Thermal properties of rare-earth monosilicates for EBC on Si-based ceramic composites. J Am Ceram Soc. 2016;99(2):589.CrossRef
[100]
Zurück zum Zitat Zou B, Khan ZS, Fan X, Huang W, Gu L, Wang Y, Xu J, Tao S, Yang K, Ma H, Cao X. A new double layer oxidation resistant coating based on Er2SiO5/LaMgAl11O19 deposited on C/SiC composites by atmospheric plasma spraying. Surf Coat Technol. 2013;219:101.CrossRef Zou B, Khan ZS, Fan X, Huang W, Gu L, Wang Y, Xu J, Tao S, Yang K, Ma H, Cao X. A new double layer oxidation resistant coating based on Er2SiO5/LaMgAl11O19 deposited on C/SiC composites by atmospheric plasma spraying. Surf Coat Technol. 2013;219:101.CrossRef
[101]
Zurück zum Zitat Fernández-Carrión AJ, Allix M, Becerro AI. Thermal expansion of rare-earth pyrosilicates. J Am Ceram Soc. 2013;96(7):2298.CrossRef Fernández-Carrión AJ, Allix M, Becerro AI. Thermal expansion of rare-earth pyrosilicates. J Am Ceram Soc. 2013;96(7):2298.CrossRef
[102]
Zurück zum Zitat Tian Z, Zheng L, Wang J, Wan P, Li J, Wang J. Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications. J Eur Ceram Soc. 2016;36(1):189.CrossRef Tian Z, Zheng L, Wang J, Wan P, Li J, Wang J. Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications. J Eur Ceram Soc. 2016;36(1):189.CrossRef
[103]
Zurück zum Zitat Tian Z, Zheng L, Li Z, Li J, Wang J. Exploration of the low thermal conductivities of γ-Y2Si2O7, β-Y2Si2O7, β-Yb2Si2O7, and β-Lu2Si2O7 as novel environmental barrier coating candidates. J Eur Ceram Soc. 2016;36(11):2813.CrossRef Tian Z, Zheng L, Li Z, Li J, Wang J. Exploration of the low thermal conductivities of γ-Y2Si2O7, β-Y2Si2O7, β-Yb2Si2O7, and β-Lu2Si2O7 as novel environmental barrier coating candidates. J Eur Ceram Soc. 2016;36(11):2813.CrossRef
[104]
Zurück zum Zitat Wang Y, Liu J. First-principles investigation on the corrosion resistance of rare earth disilicates in water vapor. J Eur Ceram Soc. 2009;29(11):2163.CrossRef Wang Y, Liu J. First-principles investigation on the corrosion resistance of rare earth disilicates in water vapor. J Eur Ceram Soc. 2009;29(11):2163.CrossRef
[105]
Zurück zum Zitat Ueno S, Ohji T, Lin HT. Designing lutetium silicate environmental barrier coatings for silicon nitride and its recession behavior in steam jets. J Ceram Process Res. 2006;7(1):20. Ueno S, Ohji T, Lin HT. Designing lutetium silicate environmental barrier coatings for silicon nitride and its recession behavior in steam jets. J Ceram Process Res. 2006;7(1):20.
[106]
Zurück zum Zitat Ueno S, Jayaseelan DD, Ohji T. Comparison of water vapor corrosion behavior of silicon nitride with various EBC layers. J Ceram Process Res. 2004;5(4):355. Ueno S, Jayaseelan DD, Ohji T. Comparison of water vapor corrosion behavior of silicon nitride with various EBC layers. J Ceram Process Res. 2004;5(4):355.
[107]
Zurück zum Zitat Wen H, Dong S, He P, Wang Z, Zhou H, Zhang X. Sol–gel synthesis and characterization of ytterbium silicate powders. J Am Ceram Soc. 2007;90(12):4043. Wen H, Dong S, He P, Wang Z, Zhou H, Zhang X. Sol–gel synthesis and characterization of ytterbium silicate powders. J Am Ceram Soc. 2007;90(12):4043.
[108]
Zurück zum Zitat Zhong X, Niu Y, Li H, Zeng Y, Zheng X, Ding C, Sun J. Microstructure evolution and thermomechanical properties of plasma-sprayed Yb2SiO5 coating during thermal aging. J Am Ceram Soc. 2017;100(5):1896.CrossRef Zhong X, Niu Y, Li H, Zeng Y, Zheng X, Ding C, Sun J. Microstructure evolution and thermomechanical properties of plasma-sprayed Yb2SiO5 coating during thermal aging. J Am Ceram Soc. 2017;100(5):1896.CrossRef
[109]
Zurück zum Zitat Ueno S, Jayaseelan DD, Ohji T, Lin HT. Recession mechanism of Lu2Si2O7 phase in high speed steam jet environment at high temperatures. Ceram Int. 2006;32(7):775.CrossRef Ueno S, Jayaseelan DD, Ohji T, Lin HT. Recession mechanism of Lu2Si2O7 phase in high speed steam jet environment at high temperatures. Ceram Int. 2006;32(7):775.CrossRef
[110]
Zurück zum Zitat Ramasamy S, Tewari SN, Lee KN, Bhatt RT, Fox DS. Environmental durability of slurry based mullite–gadolinium silicate EBCs on silicon carbide. J Eur Ceram Soc. 2011;31(6):1123.CrossRef Ramasamy S, Tewari SN, Lee KN, Bhatt RT, Fox DS. Environmental durability of slurry based mullite–gadolinium silicate EBCs on silicon carbide. J Eur Ceram Soc. 2011;31(6):1123.CrossRef
[111]
Zurück zum Zitat Richards BT, Wadley HNG. Plasma spray deposition of tri-layer environmental barrier coatings. J Eur Ceram Soc. 2014;34(12):3069.CrossRef Richards BT, Wadley HNG. Plasma spray deposition of tri-layer environmental barrier coatings. J Eur Ceram Soc. 2014;34(12):3069.CrossRef
[112]
Zurück zum Zitat He S, Xiong X, He L. High temperature oxidation behavior of new Yb2SiO5 environmental barrier coatings at 1400 °C. J Mater Eng. 2015;43(04):37. He S, Xiong X, He L. High temperature oxidation behavior of new Yb2SiO5 environmental barrier coatings at 1400 °C. J Mater Eng. 2015;43(04):37.
[113]
Zurück zum Zitat Gao L, Guo H, Wei L, Li C, Gong S, Xu H. Microstructure and mechanical properties of yttria stabilized zirconia coatings prepared by plasma spray physical vapor deposition. Ceram Int. 2015;41(7):8305.CrossRef Gao L, Guo H, Wei L, Li C, Gong S, Xu H. Microstructure and mechanical properties of yttria stabilized zirconia coatings prepared by plasma spray physical vapor deposition. Ceram Int. 2015;41(7):8305.CrossRef
[114]
Zurück zum Zitat Xu J, Sarin VK, Dixit S, Basu SN. Stability of interfaces in hybrid EBC/TBC coatings for Si-based ceramics in corrosive environments. Int J Refract Met Hard Mater. 2015;49:339.CrossRef Xu J, Sarin VK, Dixit S, Basu SN. Stability of interfaces in hybrid EBC/TBC coatings for Si-based ceramics in corrosive environments. Int J Refract Met Hard Mater. 2015;49:339.CrossRef
[115]
Zurück zum Zitat Basu SN, Kulkarni T, Wang HZ, Sarin VK. Functionally graded chemical vapor deposited mullite environmental barrier coatings for Si-based ceramics. J Eur Ceram Soc. 2008;28(2):437.CrossRef Basu SN, Kulkarni T, Wang HZ, Sarin VK. Functionally graded chemical vapor deposited mullite environmental barrier coatings for Si-based ceramics. J Eur Ceram Soc. 2008;28(2):437.CrossRef
[116]
Zurück zum Zitat Zhang X, Zhou K, Liu M, Deng C, Deng C, Niu S, Xu S, Su Y. CMAS corrosion and thermal cycle of Al-modified PS-PVD environmental barrier coating. Ceram Int. 2018;44(13):15959.CrossRef Zhang X, Zhou K, Liu M, Deng C, Deng C, Niu S, Xu S, Su Y. CMAS corrosion and thermal cycle of Al-modified PS-PVD environmental barrier coating. Ceram Int. 2018;44(13):15959.CrossRef
[117]
Zurück zum Zitat Chen HF, Klemm H. Environmental barrier coatings for silicon nitride. Key Eng Mater. 2011;484:139.CrossRef Chen HF, Klemm H. Environmental barrier coatings for silicon nitride. Key Eng Mater. 2011;484:139.CrossRef
[118]
Zurück zum Zitat Goto T. High-speed deposition of zirconia films by laser-induced plasma CVD. Solid State Ion. 2004;172(1–4):225.CrossRef Goto T. High-speed deposition of zirconia films by laser-induced plasma CVD. Solid State Ion. 2004;172(1–4):225.CrossRef
[119]
Zurück zum Zitat Botero CA, Jimenez-Piqué E, Martín R, Kulkarni T, Sarin VK, Llanes L. Influence of temperature and hot corrosion on the micro–nanomechanical behavior of protective mullite EBCs. Int J Refract Met Hard Mater. 2015;49:383.CrossRef Botero CA, Jimenez-Piqué E, Martín R, Kulkarni T, Sarin VK, Llanes L. Influence of temperature and hot corrosion on the micro–nanomechanical behavior of protective mullite EBCs. Int J Refract Met Hard Mater. 2015;49:383.CrossRef
[120]
Zurück zum Zitat Eaton HE, Linsey GD. Accelerated oxidation of SiC CMC’s by water vapor and protection via environmental barrier coating approach. J Eur Ceram Soc. 2002;22(14):2741.CrossRef Eaton HE, Linsey GD. Accelerated oxidation of SiC CMC’s by water vapor and protection via environmental barrier coating approach. J Eur Ceram Soc. 2002;22(14):2741.CrossRef
[121]
Zurück zum Zitat Liu J, Zhang L, Hu F, Yang J, Cheng L, Wang Y. Polymer-derived yttrium silicate coatings on 2D C/SiC composites. J Eur Ceram Soc. 2013;33(2):433.CrossRef Liu J, Zhang L, Hu F, Yang J, Cheng L, Wang Y. Polymer-derived yttrium silicate coatings on 2D C/SiC composites. J Eur Ceram Soc. 2013;33(2):433.CrossRef
[122]
Zurück zum Zitat Ueno S, Jayaseelan DD, Ohji T. Development of oxide-based EBC for silicon nitride. Int J Appl Ceram Technol. 2004;1(4):362.CrossRef Ueno S, Jayaseelan DD, Ohji T. Development of oxide-based EBC for silicon nitride. Int J Appl Ceram Technol. 2004;1(4):362.CrossRef
[123]
Zurück zum Zitat Ueno S, Ohji T, Lin HT. Recession behavior of Yb2Si2O7 phase under high speed steam jet at high temperatures. Corros Sci. 2008;50(1):178.CrossRef Ueno S, Ohji T, Lin HT. Recession behavior of Yb2Si2O7 phase under high speed steam jet at high temperatures. Corros Sci. 2008;50(1):178.CrossRef
[124]
Zurück zum Zitat Toohey CM. Novel Environmental Barrier Coatings for Resistance Against Degradation by Molten Glassy Deposits in the Presence of Water Vapor. Columbus: Ohio State University; 2011. 44. Toohey CM. Novel Environmental Barrier Coatings for Resistance Against Degradation by Molten Glassy Deposits in the Presence of Water Vapor. Columbus: Ohio State University; 2011. 44.
[125]
Zurück zum Zitat Turcer LR, Krause AR, Garces HF, Zhang L, Padture NP. Environmental-barrier coating ceramics for resistance against attack by molten calcia–magnesia–aluminosilicate (CMAS) glass: part I, YAlO3 and γ-Y2Si2O7. J Eur Ceram Soc. 2018;38(11):3905.CrossRef Turcer LR, Krause AR, Garces HF, Zhang L, Padture NP. Environmental-barrier coating ceramics for resistance against attack by molten calcia–magnesia–aluminosilicate (CMAS) glass: part I, YAlO3 and γ-Y2Si2O7. J Eur Ceram Soc. 2018;38(11):3905.CrossRef
[126]
Zurück zum Zitat Turcer LR, Krause AR, Garces HF, Zhang L, Padture NP. Environmental-barrier coating ceramics for resistance against attack by molten calcia–magnesia–aluminosilicate (CMAS) glass: part II, β-Yb2Si2O7 and β-Sc2Si2O7. J Eur Ceram Soc. 2018;38(11):3914.CrossRef Turcer LR, Krause AR, Garces HF, Zhang L, Padture NP. Environmental-barrier coating ceramics for resistance against attack by molten calcia–magnesia–aluminosilicate (CMAS) glass: part II, β-Yb2Si2O7 and β-Sc2Si2O7. J Eur Ceram Soc. 2018;38(11):3914.CrossRef
Metadaten
Titel
Recent progress in thermal/environmental barrier coatings and their corrosion resistance
verfasst von
Hong-Fei Chen
Chi Zhang
Yu-Chen Liu
Peng Song
Wen-Xian Li
Guang Yang
Bin Liu
Publikationsdatum
28.08.2019
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 5/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01307-1

Weitere Artikel der Ausgabe 5/2020

Rare Metals 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.