Skip to main content
Erschienen in: Cellulose 9/2018

13.07.2018 | Original Paper

Reductive-co-precipitated cellulose immobilized zerovalent iron nanoparticles in ionic liquid/water for Cr(VI) adsorption

verfasst von: Archana Kumari Sharma, Rupesh S. Devan, Meenu Arora, Rabindra Kumar, Yuan-Ron Ma, J. Nagendra Babu

Erschienen in: Cellulose | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microcrystalline cellulose immobilized zerovalent iron nanoparticles (CI-1-3) with different loading of 6, 12 and 24% w/w Fe0 were synthesized by NaBH4 reduction under simultaneous co-precipitation of cellulose from ionic liquid ([BMIM]Cl)-water binary mixture. SEM, TEM, FTIR, VSM, XRD and XPS analysis were carried out to characterize the material. The electron microscopy studies revealed the immobilization of iron nanoparticle in the bulk and surface of microcrystalline cellulose with a size range of 20–100 nm. CI-1-3 showed strong interaction between cellulose hydroxyl moiety and nZVI, immobilized on the polymer and saturation magnetization of 3 emu/g for CI-2. The materials were studied for Cr(VI) adsorption which revealed the qmax value of 28.57, 58.82 and 38.48 mg Cr(VI)/g of CI-1-3, respectively.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Alidokht L, Khataee AR, Reyhanitabar A, Oustan S (2011) Reductive removal of Cr(VI) by starch-stabilized Fe0 nanoparticles in aqueous solution. Desalination 270:105–110CrossRef Alidokht L, Khataee AR, Reyhanitabar A, Oustan S (2011) Reductive removal of Cr(VI) by starch-stabilized Fe0 nanoparticles in aqueous solution. Desalination 270:105–110CrossRef
Zurück zum Zitat Anirudhan TS, Jalajamony S, Suchithra PS (2009) Improved performance of a cellulose-based anion exchanger with tertiary amine functionality for the adsorption of chromium(VI) from aqueous solutions. Colloids Surf A 335:107–113CrossRef Anirudhan TS, Jalajamony S, Suchithra PS (2009) Improved performance of a cellulose-based anion exchanger with tertiary amine functionality for the adsorption of chromium(VI) from aqueous solutions. Colloids Surf A 335:107–113CrossRef
Zurück zum Zitat APHA (2005) Standard methods for the examination of water and wastewater, 21st ed. American Public Health Association, Washington, DC, pp 3-67–3-68 APHA (2005) Standard methods for the examination of water and wastewater, 21st ed. American Public Health Association, Washington, DC, pp 3-67–3-68
Zurück zum Zitat Bezbaruah AN, Krajangpan S, Chisholm BJ, Khan E, Bermudez JJE (2009) Entrapment of iron nanoparticles in calcium alginate beads for ground water remediation application. J Hazard Mater 166:1339–1343CrossRefPubMed Bezbaruah AN, Krajangpan S, Chisholm BJ, Khan E, Bermudez JJE (2009) Entrapment of iron nanoparticles in calcium alginate beads for ground water remediation application. J Hazard Mater 166:1339–1343CrossRefPubMed
Zurück zum Zitat Cai J, Kimura S, Wada M, Kuga S (2008) Nanoporous cellulose as metal nanoparticles support. Biomacromol 10:87–94CrossRef Cai J, Kimura S, Wada M, Kuga S (2008) Nanoporous cellulose as metal nanoparticles support. Biomacromol 10:87–94CrossRef
Zurück zum Zitat Choi K, Lee S, Park JO, Park JA, Cho SH, Lee SY, Lee JH, Choi JW (2018) Chromium removal from aqueous solution by a PEI-silica nanocomposite. Sci Rep 8:1438CrossRefPubMedPubMedCentral Choi K, Lee S, Park JO, Park JA, Cho SH, Lee SY, Lee JH, Choi JW (2018) Chromium removal from aqueous solution by a PEI-silica nanocomposite. Sci Rep 8:1438CrossRefPubMedPubMedCentral
Zurück zum Zitat Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125CrossRefPubMed Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125CrossRefPubMed
Zurück zum Zitat Crowhurst L, Mawdsley PR, Perez JM (2003) Solvent-solute interaction in ionic liquid. Phys Chem Chem Phys 5:2790–2794CrossRef Crowhurst L, Mawdsley PR, Perez JM (2003) Solvent-solute interaction in ionic liquid. Phys Chem Chem Phys 5:2790–2794CrossRef
Zurück zum Zitat Dafader NC, Rahman N, Majumdar SK, Khan MM, Rahman MM (2018) Preparation and characterization of iminodiacetate group containing nonwoven polyethylene fabrics and its application in chromium adsorption. J Polym Environ 26:740–748CrossRef Dafader NC, Rahman N, Majumdar SK, Khan MM, Rahman MM (2018) Preparation and characterization of iminodiacetate group containing nonwoven polyethylene fabrics and its application in chromium adsorption. J Polym Environ 26:740–748CrossRef
Zurück zum Zitat Dalla Vecchia E, Coisson M, Appino C, Vinai F, Sethi R (2009) Magnetic characterization and interaction modeling of zerovalent iron nanoparticles for the remediation of contaminated aquifers. J Nanosci Nanotechnol 9:3210–3218CrossRefPubMed Dalla Vecchia E, Coisson M, Appino C, Vinai F, Sethi R (2009) Magnetic characterization and interaction modeling of zerovalent iron nanoparticles for the remediation of contaminated aquifers. J Nanosci Nanotechnol 9:3210–3218CrossRefPubMed
Zurück zum Zitat Datta KKR, Petala E, Datta KJ, Perman JA, Tucek J, Bartak P, Zboril R (2014) NZVI modified magnetic filter paper with high redox and catalytic activities for advanced water treatment technologies. Chem Commun 50:15673–15676CrossRef Datta KKR, Petala E, Datta KJ, Perman JA, Tucek J, Bartak P, Zboril R (2014) NZVI modified magnetic filter paper with high redox and catalytic activities for advanced water treatment technologies. Chem Commun 50:15673–15676CrossRef
Zurück zum Zitat de Morais Teixeira E, Corrêa AC, Manzoli A, de Lima Leite F, de Oliveira CR, Mattoso LHC (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17(3):595–606CrossRef de Morais Teixeira E, Corrêa AC, Manzoli A, de Lima Leite F, de Oliveira CR, Mattoso LHC (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17(3):595–606CrossRef
Zurück zum Zitat Devan RS, Ho WD, Chen CH, Shiu HW, Ho CH, Cheng CL, Wu SY, Liou Y, Ma YR (2009) High room-temperature photoluminescence of one-dimensional Ta2O5 nanorod arrays. Nanotechnology 20:445708CrossRefPubMed Devan RS, Ho WD, Chen CH, Shiu HW, Ho CH, Cheng CL, Wu SY, Liou Y, Ma YR (2009) High room-temperature photoluminescence of one-dimensional Ta2O5 nanorod arrays. Nanotechnology 20:445708CrossRefPubMed
Zurück zum Zitat Devan RS, Lin JH, Ho WD, Wu SY, Liou Y, Ma YR (2010) Investigation of high-temperature phase transformation in one-dimensional Ta2O5 nanorods. J Appl Crystallogr 43:1062–1067CrossRef Devan RS, Lin JH, Ho WD, Wu SY, Liou Y, Ma YR (2010) Investigation of high-temperature phase transformation in one-dimensional Ta2O5 nanorods. J Appl Crystallogr 43:1062–1067CrossRef
Zurück zum Zitat Devan RS, Lin CL, Gao SY, Cheng CL, Liou Y, Ma YR (2011) Enhancement of green-light photoluminescence of Ta2O5 nanoblock stacks. Phys Chem Chem Phys 13:13441–13446CrossRefPubMed Devan RS, Lin CL, Gao SY, Cheng CL, Liou Y, Ma YR (2011) Enhancement of green-light photoluminescence of Ta2O5 nanoblock stacks. Phys Chem Chem Phys 13:13441–13446CrossRefPubMed
Zurück zum Zitat Devan RS, Ma YR, More MA, Khare RT, Antad VV, Patil RA, Thakare VP, Dhayal RS, Schmidt-Mende L (2016) Promising field electron emission performance of vertically aligned one dimensional (1D) brookite (β) TiO2 nanorods. RSC Adv 6:98722–98729CrossRef Devan RS, Ma YR, More MA, Khare RT, Antad VV, Patil RA, Thakare VP, Dhayal RS, Schmidt-Mende L (2016) Promising field electron emission performance of vertically aligned one dimensional (1D) brookite (β) TiO2 nanorods. RSC Adv 6:98722–98729CrossRef
Zurück zum Zitat Devan RS, Thakare VP, Antad VV, Chikate PR, Khare RT, More MA, Dhayal RS, Patil SI, Ma YR, Schmidt-Mende L (2017) Nano-heteroarchitectures of two-dimensional MoS2@ one-dimensional brookite TiO2 nanorods: prominent electron emitters for displays. ACS Omega 2:2925–2934CrossRef Devan RS, Thakare VP, Antad VV, Chikate PR, Khare RT, More MA, Dhayal RS, Patil SI, Ma YR, Schmidt-Mende L (2017) Nano-heteroarchitectures of two-dimensional MoS2@ one-dimensional brookite TiO2 nanorods: prominent electron emitters for displays. ACS Omega 2:2925–2934CrossRef
Zurück zum Zitat Duan J, He X, Zhang L (2015) Magnetic cellulose–TiO2 nanocomposite microspheres for highly selective enrichment of phosphopeptides. Chem Commun 51:338–341CrossRef Duan J, He X, Zhang L (2015) Magnetic cellulose–TiO2 nanocomposite microspheres for highly selective enrichment of phosphopeptides. Chem Commun 51:338–341CrossRef
Zurück zum Zitat Eliodorio KP, Andolfatto VS, Martins MR, de Sá BP, Umeki ER, de Araújo Morandim-GiannettiA (2017) Treatment of chromium effluent by adsorption on chitosan activated with ionic liquids. Cellulose 24:2559–2570CrossRef Eliodorio KP, Andolfatto VS, Martins MR, de Sá BP, Umeki ER, de Araújo Morandim-GiannettiA (2017) Treatment of chromium effluent by adsorption on chitosan activated with ionic liquids. Cellulose 24:2559–2570CrossRef
Zurück zum Zitat Fitz-Patrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101:8915–8922CrossRef Fitz-Patrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol 101:8915–8922CrossRef
Zurück zum Zitat Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418CrossRef Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418CrossRef
Zurück zum Zitat Fu F, Ma J, Xie L, Tang B, Han W, Lin S (2013) Chromium removal using resin supported nanoscale zero-valent iron. J Environ Manag 128:822–827CrossRef Fu F, Ma J, Xie L, Tang B, Han W, Lin S (2013) Chromium removal using resin supported nanoscale zero-valent iron. J Environ Manag 128:822–827CrossRef
Zurück zum Zitat Fu R, Yang Y, Xu Z, Zhang X, Guo X, Bi D (2015) The removal of chromium(VI) and lead(II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Chemosphere 138:726–734CrossRefPubMed Fu R, Yang Y, Xu Z, Zhang X, Guo X, Bi D (2015) The removal of chromium(VI) and lead(II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI). Chemosphere 138:726–734CrossRefPubMed
Zurück zum Zitat Galan B, Castañeda D, Ortiz I (2005) Removal and recovery of Cr(VI) from polluted ground waters: a comparative study of ion-exchange technologies. Water Res 39:4317–4324CrossRefPubMed Galan B, Castañeda D, Ortiz I (2005) Removal and recovery of Cr(VI) from polluted ground waters: a comparative study of ion-exchange technologies. Water Res 39:4317–4324CrossRefPubMed
Zurück zum Zitat Gelesky MA, Scheeren CW, Foppa L, Pavan FA, Dias SL, Dupont J (2009) Metal nanoparticle/ionic liquid/cellulose: new catalytically active membrane materials for hydrogenation reactions. Biomacromol 10:1888–1893CrossRef Gelesky MA, Scheeren CW, Foppa L, Pavan FA, Dias SL, Dupont J (2009) Metal nanoparticle/ionic liquid/cellulose: new catalytically active membrane materials for hydrogenation reactions. Biomacromol 10:1888–1893CrossRef
Zurück zum Zitat Geng B, Jin Z, Li T, Qi X (2009) Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Chemosphere 75:825–830CrossRefPubMed Geng B, Jin Z, Li T, Qi X (2009) Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Chemosphere 75:825–830CrossRefPubMed
Zurück zum Zitat Gheju M (2011) Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic system. Water Air Soil Pollut 222:103–148CrossRef Gheju M (2011) Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic system. Water Air Soil Pollut 222:103–148CrossRef
Zurück zum Zitat Golder AK, Samanta AN, Ray S (2007) Removal of trivalent chromium by electrocoagulation. Sep Purif Technol 53:33–41CrossRef Golder AK, Samanta AN, Ray S (2007) Removal of trivalent chromium by electrocoagulation. Sep Purif Technol 53:33–41CrossRef
Zurück zum Zitat Guo ZR, Zhang G, Fang J, Dou X (2006) Enhanced chromium recovery from tanning wastewater. J Clean Prod 14:75–79CrossRef Guo ZR, Zhang G, Fang J, Dou X (2006) Enhanced chromium recovery from tanning wastewater. J Clean Prod 14:75–79CrossRef
Zurück zum Zitat Gurgel LVA, de Melo JCP, de Lena JC, Gil LF (2009) Adsorption of chromium(VI) ion from aqueous solution by succinylated-mercerized cellulose functionalized with quaternary ammonium groups. Bioresour Technol 100:3214–3220CrossRefPubMed Gurgel LVA, de Melo JCP, de Lena JC, Gil LF (2009) Adsorption of chromium(VI) ion from aqueous solution by succinylated-mercerized cellulose functionalized with quaternary ammonium groups. Bioresour Technol 100:3214–3220CrossRefPubMed
Zurück zum Zitat Hafez A, El-Mariharawy S (2004) Design and performance of the two-stage/two-pass RO membrane system for chromium removal from tannery wastewater. Desalination 165:141–151CrossRef Hafez A, El-Mariharawy S (2004) Design and performance of the two-stage/two-pass RO membrane system for chromium removal from tannery wastewater. Desalination 165:141–151CrossRef
Zurück zum Zitat Halada GP, Clayton CR (1991) Photoreduction of hexavalent chromium during X-ray photoelectron spectroscopy analysis of electrochemical and thermal films. J Electrochem Soc 138:2921–2927CrossRef Halada GP, Clayton CR (1991) Photoreduction of hexavalent chromium during X-ray photoelectron spectroscopy analysis of electrochemical and thermal films. J Electrochem Soc 138:2921–2927CrossRef
Zurück zum Zitat Harvey AE Jr, Smart JA, Amis ES (1955) Simultaneous spectrophotometric determination of iron(II) and total iron with 1,10-phenanthroline. Anal Chem 27:26–29CrossRef Harvey AE Jr, Smart JA, Amis ES (1955) Simultaneous spectrophotometric determination of iron(II) and total iron with 1,10-phenanthroline. Anal Chem 27:26–29CrossRef
Zurück zum Zitat He F, Zhao D, Liu J, Roberts CB (2007) Stabilization of Fe–Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46:29–34CrossRef He F, Zhao D, Liu J, Roberts CB (2007) Stabilization of Fe–Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46:29–34CrossRef
Zurück zum Zitat Hines JH, Wanigasekara E, Rudkevich DM, Rogers RD (2008) Calix[4]arenes immobilized in a cellulose-based platform for entrapment and detection of NO x gases. J Mater Chem 18:4050–4055CrossRef Hines JH, Wanigasekara E, Rudkevich DM, Rogers RD (2008) Calix[4]arenes immobilized in a cellulose-based platform for entrapment and detection of NO x gases. J Mater Chem 18:4050–4055CrossRef
Zurück zum Zitat Horzum N, Demir MM, Nairat M, Shahwan T (2013) Chitosan fiber-supported zero-valent iron nanoparticles as a novel sorbent for sequestration of inorganic arsenic. RSC Adv 3:7828–7837CrossRef Horzum N, Demir MM, Nairat M, Shahwan T (2013) Chitosan fiber-supported zero-valent iron nanoparticles as a novel sorbent for sequestration of inorganic arsenic. RSC Adv 3:7828–7837CrossRef
Zurück zum Zitat Hu XJ, Wang JS, Liua YG, Li X, Zenga GM, Bao ZL, Zeng XX, Chen AW, Long F (2011) Adsorption of chromium(VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: isotherms, kinetics and thermodynamics. J Hazard Mater 185:306–314CrossRefPubMed Hu XJ, Wang JS, Liua YG, Li X, Zenga GM, Bao ZL, Zeng XX, Chen AW, Long F (2011) Adsorption of chromium(VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: isotherms, kinetics and thermodynamics. J Hazard Mater 185:306–314CrossRefPubMed
Zurück zum Zitat Jabeen H, Chandra V, Jung S, Lee JW, Kim KS, Kim SB (2011) Enhanced Cr(VI) removal using iron nanoparticle decorated graphene. Nanoscale 3:3583–3585CrossRefPubMed Jabeen H, Chandra V, Jung S, Lee JW, Kim KS, Kim SB (2011) Enhanced Cr(VI) removal using iron nanoparticle decorated graphene. Nanoscale 3:3583–3585CrossRefPubMed
Zurück zum Zitat Jones F, Farrow JB, Van Bronswijk W (1998) An infrared study of a polyacrylate flocculant adsorbed on hematite. Langmuir 14:6512–6517CrossRef Jones F, Farrow JB, Van Bronswijk W (1998) An infrared study of a polyacrylate flocculant adsorbed on hematite. Langmuir 14:6512–6517CrossRef
Zurück zum Zitat Kim UJ, Kuga S (2001) Thermal decomposition of dialdehyde cellulose and its nitrogen-containing derivatives. Thermochim Acta 369:79–85CrossRef Kim UJ, Kuga S (2001) Thermal decomposition of dialdehyde cellulose and its nitrogen-containing derivatives. Thermochim Acta 369:79–85CrossRef
Zurück zum Zitat Kim UJ, Wada M, Kuga S (2004) Solubilization of dialdehyde cellulose by hot water. Carbohydr Polym 56:7–10CrossRef Kim UJ, Wada M, Kuga S (2004) Solubilization of dialdehyde cellulose by hot water. Carbohydr Polym 56:7–10CrossRef
Zurück zum Zitat Kim JH, Kim JH, Bokare V, Kim EJ, Chang YY, Chang YS (2012) Enhanced removal of chromate from aqueous solution by sequential adsorption-reduction on mesoporous iron–iron oxide nanocomposite. J Nanopart Res 14:1010CrossRef Kim JH, Kim JH, Bokare V, Kim EJ, Chang YY, Chang YS (2012) Enhanced removal of chromate from aqueous solution by sequential adsorption-reduction on mesoporous iron–iron oxide nanocomposite. J Nanopart Res 14:1010CrossRef
Zurück zum Zitat Klein-Marcuschamer D, Simmons BA, Blanch HW (2011) Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels Bioprod Biorefin 5:562–569CrossRef Klein-Marcuschamer D, Simmons BA, Blanch HW (2011) Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels Bioprod Biorefin 5:562–569CrossRef
Zurück zum Zitat Kotelnikova N, Vainio U, Pirkkalainen K, Serimaa R (2007) Novel approaches to metallization of cellulose by reduction of cellulose-incorporated copper and nickel Ions. Macromol Symp 254:74–79CrossRef Kotelnikova N, Vainio U, Pirkkalainen K, Serimaa R (2007) Novel approaches to metallization of cellulose by reduction of cellulose-incorporated copper and nickel Ions. Macromol Symp 254:74–79CrossRef
Zurück zum Zitat Koujalagi PS, Divekar SV, Kulkarni RM, Nagarale RK (2013) Kinetics, thermodynamic, and adsorption studies on removal of chromium(VI) using Tulsion A-27(MP) resin. Desalin Water Treat 51:3273–3283CrossRef Koujalagi PS, Divekar SV, Kulkarni RM, Nagarale RK (2013) Kinetics, thermodynamic, and adsorption studies on removal of chromium(VI) using Tulsion A-27(MP) resin. Desalin Water Treat 51:3273–3283CrossRef
Zurück zum Zitat Kumar AS, Jiang SJ, Tseng WL (2015) Effective adsorption of chromium(VI)/Cr(III) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. J Mater Chem A 3:7044–7057CrossRef Kumar AS, Jiang SJ, Tseng WL (2015) Effective adsorption of chromium(VI)/Cr(III) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. J Mater Chem A 3:7044–7057CrossRef
Zurück zum Zitat Kwak HW, Kim MK, Lee JY, Yun H, Kim MH, Park YH, Lee KH (2015) Preparation of bead-type biosorbent from water-soluble Spirulina platensis extracts for chromium(VI) removal. Algal Res 7:92–99CrossRef Kwak HW, Kim MK, Lee JY, Yun H, Kim MH, Park YH, Lee KH (2015) Preparation of bead-type biosorbent from water-soluble Spirulina platensis extracts for chromium(VI) removal. Algal Res 7:92–99CrossRef
Zurück zum Zitat Li XQ, Zhang WX (2007) Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C 111:6939–6946CrossRef Li XQ, Zhang WX (2007) Sequestration of metal cations with zerovalent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C 111:6939–6946CrossRef
Zurück zum Zitat Li XQ, Cao J, Zhang WX (2008) Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): a study with high-resolution X-ray photoelectron spectroscopy (HR-XPS). Ind Eng Chem Res 47:2131–2139CrossRef Li XQ, Cao J, Zhang WX (2008) Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): a study with high-resolution X-ray photoelectron spectroscopy (HR-XPS). Ind Eng Chem Res 47:2131–2139CrossRef
Zurück zum Zitat Li L, Li Y, Cao L, Yang C (2015) Enhanced chromium(VI) adsorption using nanosized chitosan fibers tailored by electrospinning. Carbohydr Polym 125:206–213CrossRefPubMed Li L, Li Y, Cao L, Yang C (2015) Enhanced chromium(VI) adsorption using nanosized chitosan fibers tailored by electrospinning. Carbohydr Polym 125:206–213CrossRefPubMed
Zurück zum Zitat Li Q, Xu B, Zhuang L, Xu X, Wang G, Zhang X, Chen J, Tang Y (2018) Preparation, characterization, adsorption kinetics and thermodynamics of chitosan adsorbent grafted with a hyperbranched polymer designed for Cr(VI) removal. Cellulose 25:3471–3486CrossRef Li Q, Xu B, Zhuang L, Xu X, Wang G, Zhang X, Chen J, Tang Y (2018) Preparation, characterization, adsorption kinetics and thermodynamics of chitosan adsorbent grafted with a hyperbranched polymer designed for Cr(VI) removal. Cellulose 25:3471–3486CrossRef
Zurück zum Zitat Liu Z, Wang H, Liu C, Jiang Y, Yu G, Mu X, Wang X (2012) Magnetic cellulose–chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chem Commun 48:7350–7352CrossRef Liu Z, Wang H, Liu C, Jiang Y, Yu G, Mu X, Wang X (2012) Magnetic cellulose–chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chem Commun 48:7350–7352CrossRef
Zurück zum Zitat Liu X, Zhou W, Qian X, Shen J, An X (2013) Polyaniline/cellulose fiber composite prepared using persulfate as oxidant for Cr(VI)-detoxification. Carbohydr Polym 92:659–661CrossRefPubMed Liu X, Zhou W, Qian X, Shen J, An X (2013) Polyaniline/cellulose fiber composite prepared using persulfate as oxidant for Cr(VI)-detoxification. Carbohydr Polym 92:659–661CrossRefPubMed
Zurück zum Zitat Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336CrossRef Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336CrossRef
Zurück zum Zitat Manning BA, Kiser JR, Kwon H, Kanel SR (2007) Spectroscopic investigation of Cr(III)-and Cr(VI)-treated nanoscale zerovalent iron. Environ Sci Technol 41:586–592CrossRefPubMed Manning BA, Kiser JR, Kwon H, Kanel SR (2007) Spectroscopic investigation of Cr(III)-and Cr(VI)-treated nanoscale zerovalent iron. Environ Sci Technol 41:586–592CrossRefPubMed
Zurück zum Zitat Matuana LM, Balatinecz JJ, Sodhi RNS, Park CB (2001) Surface characterization of esterified cellulosic fibers by XPS and FTIR spectroscopy. Wood Sci Technol 35:191–201CrossRef Matuana LM, Balatinecz JJ, Sodhi RNS, Park CB (2001) Surface characterization of esterified cellulosic fibers by XPS and FTIR spectroscopy. Wood Sci Technol 35:191–201CrossRef
Zurück zum Zitat Miao Q, Yan J (2013) Comparison of three ornamental plants for phytoextraction potential of chromium removal from tannery sludge. J Mater Cycles Waste Manag 15:98–105CrossRef Miao Q, Yan J (2013) Comparison of three ornamental plants for phytoextraction potential of chromium removal from tannery sludge. J Mater Cycles Waste Manag 15:98–105CrossRef
Zurück zum Zitat Moulder J (1992) Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Chastain J, King RC (eds) Eden Prairie, Physical Electronics Division, Perkin-Elmer Corporation, Minnesota Moulder J (1992) Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Chastain J, King RC (eds) Eden Prairie, Physical Electronics Division, Perkin-Elmer Corporation, Minnesota
Zurück zum Zitat Mukherjee R, Kumar R, Sinha A, Lama Y, Saha AK (2015) A review on synthesis, characterization and applications of nano-zero valent iron (nZVI) for environmental remediation. Crit Rev Environ Sci Technol 46:443–466CrossRef Mukherjee R, Kumar R, Sinha A, Lama Y, Saha AK (2015) A review on synthesis, characterization and applications of nano-zero valent iron (nZVI) for environmental remediation. Crit Rev Environ Sci Technol 46:443–466CrossRef
Zurück zum Zitat Narayani M, Vidya SK (2012) Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: a review. Crit Rev Environ Sci Technol 43:955–1009CrossRef Narayani M, Vidya SK (2012) Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: a review. Crit Rev Environ Sci Technol 43:955–1009CrossRef
Zurück zum Zitat Owlad M, Aroua MK, Daud WAW, Baroutian S (2009) Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Pollut 200:59–77CrossRef Owlad M, Aroua MK, Daud WAW, Baroutian S (2009) Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Pollut 200:59–77CrossRef
Zurück zum Zitat Parlayici S, Pehlivan E (2015) Natural biosorbents (garlic stem and horse chesnut shell) for removal of chromium(VI) from aqueous solutions. Environ Monit Assess 187:763CrossRefPubMed Parlayici S, Pehlivan E (2015) Natural biosorbents (garlic stem and horse chesnut shell) for removal of chromium(VI) from aqueous solutions. Environ Monit Assess 187:763CrossRefPubMed
Zurück zum Zitat Patterson JW, Passino R (1987) Metals separation and recovery. In: Patterson JW (ed) Metal speciation separation and recovery. Lewis, USA, pp 63–96 Patterson JW, Passino R (1987) Metals separation and recovery. In: Patterson JW (ed) Metal speciation separation and recovery. Lewis, USA, pp 63–96
Zurück zum Zitat Perez-González A, Urtiaga AM, Ibáñez R, Ortiz I (2012) State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Res 46:267–283CrossRefPubMed Perez-González A, Urtiaga AM, Ibáñez R, Ortiz I (2012) State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Res 46:267–283CrossRefPubMed
Zurück zum Zitat Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported nanoscale zerovalent iron. Environ Sci Technol 34:2564–2569CrossRef Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported nanoscale zerovalent iron. Environ Sci Technol 34:2564–2569CrossRef
Zurück zum Zitat Powell RM, Plus RW, Hightower SK, Sabatini DA (1995) Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation. Environ Sci Technol 29:1913–1922CrossRefPubMed Powell RM, Plus RW, Hightower SK, Sabatini DA (1995) Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation. Environ Sci Technol 29:1913–1922CrossRefPubMed
Zurück zum Zitat Qiu B, Xu C, Sun D, Wang Q, Gu H, Zhang X, Weeks BL, Hopper J, Ho T, Guo Z, Wei S (2015) Polyaniline coating with various substrates for hexavalent chromium removal. Appl Surf Sci 334:7–14CrossRef Qiu B, Xu C, Sun D, Wang Q, Gu H, Zhang X, Weeks BL, Hopper J, Ho T, Guo Z, Wei S (2015) Polyaniline coating with various substrates for hexavalent chromium removal. Appl Surf Sci 334:7–14CrossRef
Zurück zum Zitat Raychoudhury T, Tufenkji N, Ghoshal S (2012) Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Water Res 46:1735–1744CrossRefPubMed Raychoudhury T, Tufenkji N, Ghoshal S (2012) Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Water Res 46:1735–1744CrossRefPubMed
Zurück zum Zitat Sajana TK, Ghangrekar MM, Mitra A (2014) Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell. Bioresour Technol 155:84–90CrossRefPubMed Sajana TK, Ghangrekar MM, Mitra A (2014) Effect of presence of cellulose in the freshwater sediment on the performance of sediment microbial fuel cell. Bioresour Technol 155:84–90CrossRefPubMed
Zurück zum Zitat Saliba R, Gauthier H, Gauthier R, Petit-Ramel M (2000) Adsorption of copper(II) and chromium(III) ions onto amidoximated cellulose. J Appl Polym Sci 75:1624–1631CrossRef Saliba R, Gauthier H, Gauthier R, Petit-Ramel M (2000) Adsorption of copper(II) and chromium(III) ions onto amidoximated cellulose. J Appl Polym Sci 75:1624–1631CrossRef
Zurück zum Zitat Seid KA, Badot JC, Dubrunfaut O, Levasseur S, Guyomard D, Lestriez B (2012) Influence of the carboxymethyl cellulose binder on the multiscale electronic transport in carbon–LiFePO4 nanocomposites. J Mater Chem 22:24057–24066CrossRef Seid KA, Badot JC, Dubrunfaut O, Levasseur S, Guyomard D, Lestriez B (2012) Influence of the carboxymethyl cellulose binder on the multiscale electronic transport in carbon–LiFePO4 nanocomposites. J Mater Chem 22:24057–24066CrossRef
Zurück zum Zitat Sharma YC, Srivastava V, Weng CH, Upadhyay SN (2009) Removal of Cr(VI) from wastewater by adsorption on iron nanoparticles. Can J Chem Eng 87:921–929CrossRef Sharma YC, Srivastava V, Weng CH, Upadhyay SN (2009) Removal of Cr(VI) from wastewater by adsorption on iron nanoparticles. Can J Chem Eng 87:921–929CrossRef
Zurück zum Zitat Sharma P, Bihari V, Agarwal SK, Verma V, Kesavachandran CN, Pangtey BS, Mathur N, Singh PK, Shrivastava M, Goel SK (2012) Groundwater contaminated with hexavalent chromium [Cr(VI)]: a health survey and clinical examination of community inhabitants (Kanpur, India). PLoS ONE 7:e47877CrossRefPubMedPubMedCentral Sharma P, Bihari V, Agarwal SK, Verma V, Kesavachandran CN, Pangtey BS, Mathur N, Singh PK, Shrivastava M, Goel SK (2012) Groundwater contaminated with hexavalent chromium [Cr(VI)]: a health survey and clinical examination of community inhabitants (Kanpur, India). PLoS ONE 7:e47877CrossRefPubMedPubMedCentral
Zurück zum Zitat Sharma AK, Kumar R, Mittal S, Hussain S, Arora M, Sharma RC, Babu JN (2015) In-situ reductive regeneration of zerovalent iron nanoparticles immobilized on cellulose for atom efficient Cr(VI) adsorption. RSC Adv 5:89441–89446CrossRef Sharma AK, Kumar R, Mittal S, Hussain S, Arora M, Sharma RC, Babu JN (2015) In-situ reductive regeneration of zerovalent iron nanoparticles immobilized on cellulose for atom efficient Cr(VI) adsorption. RSC Adv 5:89441–89446CrossRef
Zurück zum Zitat Shi LN, Zhang X, Chen ZL (2011) Removal of chromium(VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res 45:886–892CrossRefPubMed Shi LN, Zhang X, Chen ZL (2011) Removal of chromium(VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res 45:886–892CrossRefPubMed
Zurück zum Zitat Singh R, Misra V, Singh RP (2011) Synthesis, characterization and role of zero-valent iron nanoparticle in removal of hexavalent chromium from chromium-spiked soil. J Nanopart Res 13:4063–4073CrossRef Singh R, Misra V, Singh RP (2011) Synthesis, characterization and role of zero-valent iron nanoparticle in removal of hexavalent chromium from chromium-spiked soil. J Nanopart Res 13:4063–4073CrossRef
Zurück zum Zitat Singha AS, Guleria A (2014) Use of low cost cellulosic biopolymer based adsorbent for the removal of toxic metal ions from the aqueous solution. Sep Sci Technol 49:2557–2567CrossRef Singha AS, Guleria A (2014) Use of low cost cellulosic biopolymer based adsorbent for the removal of toxic metal ions from the aqueous solution. Sep Sci Technol 49:2557–2567CrossRef
Zurück zum Zitat Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nanozerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J 287:618–632CrossRef Stefaniuk M, Oleszczuk P, Ok YS (2016) Review on nanozerovalent iron (nZVI): from synthesis to environmental applications. Chem Eng J 287:618–632CrossRef
Zurück zum Zitat Swatloski RP, Spear SK, Holbery JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRefPubMed Swatloski RP, Spear SK, Holbery JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRefPubMed
Zurück zum Zitat Trujillo-Reyes J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Supported and unsupported nanomaterials for water and soil remediation: Are they a useful solution for worldwide pollution? J Hazard Mater 280:487–503CrossRefPubMed Trujillo-Reyes J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Supported and unsupported nanomaterials for water and soil remediation: Are they a useful solution for worldwide pollution? J Hazard Mater 280:487–503CrossRefPubMed
Zurück zum Zitat Uzum C, Shahwan T, Eroğlu AE, Hallam KR, Scott TB, Lieberwirth I (2009) Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Appl Clay Sci 43:172–181CrossRef Uzum C, Shahwan T, Eroğlu AE, Hallam KR, Scott TB, Lieberwirth I (2009) Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Appl Clay Sci 43:172–181CrossRef
Zurück zum Zitat Vaid U, Mittal S, Babu JN (2013) Removal of hexavalent chromium from aqueous solution using biomass derived fly ash from waste-to-energy power plant. Desalin Water Treat 52:7845–7855CrossRef Vaid U, Mittal S, Babu JN (2013) Removal of hexavalent chromium from aqueous solution using biomass derived fly ash from waste-to-energy power plant. Desalin Water Treat 52:7845–7855CrossRef
Zurück zum Zitat Wen Z, Zhang Y, Dai C (2014) Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI). Colloids Surf A Physicochem Eng Asp 457:433–440CrossRef Wen Z, Zhang Y, Dai C (2014) Removal of phosphate from aqueous solution using nanoscale zerovalent iron (nZVI). Colloids Surf A Physicochem Eng Asp 457:433–440CrossRef
Zurück zum Zitat Xiao S, Shen M, Guo R, Wang S, Shi X (2009) Immobilization of zerovalent iron nanoparticles into electrospun polymer nanofibers: synthesis, characterization, and potential environmental applications. J Phys Chem C 113:18062–18068CrossRef Xiao S, Shen M, Guo R, Wang S, Shi X (2009) Immobilization of zerovalent iron nanoparticles into electrospun polymer nanofibers: synthesis, characterization, and potential environmental applications. J Phys Chem C 113:18062–18068CrossRef
Zurück zum Zitat Xie P, Hao X, Mohamad OA, Liang J, Wei G (2013) Comparative study of chromium biosorption by mesorhizobiumamorphae strain CCNWGS0123 in single and binary mixtures. Appl Biochem Biotechnol 169:570–587CrossRefPubMed Xie P, Hao X, Mohamad OA, Liang J, Wei G (2013) Comparative study of chromium biosorption by mesorhizobiumamorphae strain CCNWGS0123 in single and binary mixtures. Appl Biochem Biotechnol 169:570–587CrossRefPubMed
Zurück zum Zitat Yadav R, Sharma AK, Babu JN (2016) Sorptive removal of arsenite [As(III)] and arsenate [As(V)] by fuller’s earth immobilized nanoscale zero-valent iron nanoparticles (F-nZVI): effect of Fe0 loading on adsorption activity. J Environ Chem Eng 4:681–694CrossRef Yadav R, Sharma AK, Babu JN (2016) Sorptive removal of arsenite [As(III)] and arsenate [As(V)] by fuller’s earth immobilized nanoscale zero-valent iron nanoparticles (F-nZVI): effect of Fe0 loading on adsorption activity. J Environ Chem Eng 4:681–694CrossRef
Zurück zum Zitat Yu X, Tong S, Ge M, Zuo J, Cao C, Song W (2013) One-step synthesis of magnetic composites of cellulose@ iron oxide nanoparticles for arsenic removal. J Mater Chem A 1:959–965CrossRef Yu X, Tong S, Ge M, Zuo J, Cao C, Song W (2013) One-step synthesis of magnetic composites of cellulose@ iron oxide nanoparticles for arsenic removal. J Mater Chem A 1:959–965CrossRef
Zurück zum Zitat Zhang Y, Xu L, Zhao L, Peng J, Li C, Li J, Zhai M (2012) Radiation synthesis and Cr(VI) removal of cellulose microsphere adsorbent. Carbohydr Polym 88:931–938CrossRef Zhang Y, Xu L, Zhao L, Peng J, Li C, Li J, Zhai M (2012) Radiation synthesis and Cr(VI) removal of cellulose microsphere adsorbent. Carbohydr Polym 88:931–938CrossRef
Zurück zum Zitat Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327CrossRef Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327CrossRef
Metadaten
Titel
Reductive-co-precipitated cellulose immobilized zerovalent iron nanoparticles in ionic liquid/water for Cr(VI) adsorption
verfasst von
Archana Kumari Sharma
Rupesh S. Devan
Meenu Arora
Rabindra Kumar
Yuan-Ron Ma
J. Nagendra Babu
Publikationsdatum
13.07.2018
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 9/2018
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-1932-y

Weitere Artikel der Ausgabe 9/2018

Cellulose 9/2018 Zur Ausgabe