Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2022

22.06.2022 | Technical Article

Revealing the Relationship Between AlN Architectures and the Strengthening Mechanism of the AlN/Al Composites at 350 °C

verfasst von: Xia Ma, Yongfeng Zhao, Kewei Xie, Kai Zhao, Xiangfa Liu

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microstructure architectures greatly influence the tensile properties of materials, especially for high-temperature tensile properties. A better reinforcing effect could be achieved with the same reinforcement by tailoring the reinforcement architectures. In this study, the homogeneous, linear, and network AlN were fabricated in situ by the solid–liquid reaction. The effects of different architectures were investigated on the mechanical (hardness and tensile) properties of AlN/Al composites. The AlN network presents a significant reinforcing effect in the Al matrix at room temperature (289 MPa) and 350 °C (125 MPa). The direct observation of microstructural evolution like grain orientation, grain boundaries, and strain field during the tensile deformation at 350 °C contributes to revealing the strengthening mechanism of AlN network. It is found that AlN network can strengthen grains and grain boundaries together. Besides, AlN network can impede the crack propagation and increase the crack capability of network AlN/Al composites. Our findings in this study may help design heat resistance Al materials with high performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat J. Li, C.S. Shi, E.Z. Liu, C.N. He and N.Q. Zhao, Microstructure Evolution and Tensile Behavior of MgAlB4w/Al Composites at High Temperatures, J. Alloy Compd., 2021, 884, 161088.CrossRef J. Li, C.S. Shi, E.Z. Liu, C.N. He and N.Q. Zhao, Microstructure Evolution and Tensile Behavior of MgAlB4w/Al Composites at High Temperatures, J. Alloy Compd., 2021, 884, 161088.CrossRef
2.
Zurück zum Zitat S. Corthay, K.L. Firestein, D.G. Kvashnin, M.K. Kutzhanov, A.T. Matveev, A.M. Kovalskii, D.V. Leybo, D.V. Golbergn and D.V. Shtansky, Elevated–Temperature High–Strength h–BN–Doped Al2014 and Al7075 Composites: Experimental and Theoretical Insights, Mater. Sci. Eng. A, 2021, 809, 140969.CrossRef S. Corthay, K.L. Firestein, D.G. Kvashnin, M.K. Kutzhanov, A.T. Matveev, A.M. Kovalskii, D.V. Leybo, D.V. Golbergn and D.V. Shtansky, Elevated–Temperature High–Strength h–BN–Doped Al2014 and Al7075 Composites: Experimental and Theoretical Insights, Mater. Sci. Eng. A, 2021, 809, 140969.CrossRef
3.
Zurück zum Zitat A.D. Du, A.E.W. Jarfors, J.C. Zheng, K.K. Wang and G.G. Yu, The Influence of La and Ce on Microstructure and Mechanical Properties of an Al–Si–Cu–Mg–Fe Alloy at High Temperature, Metals, 2021, 11, p 384.CrossRef A.D. Du, A.E.W. Jarfors, J.C. Zheng, K.K. Wang and G.G. Yu, The Influence of La and Ce on Microstructure and Mechanical Properties of an Al–Si–Cu–Mg–Fe Alloy at High Temperature, Metals, 2021, 11, p 384.CrossRef
4.
Zurück zum Zitat Y.J. Zhang, S. Amirkhanlou and S.X. Ji, Reinforcement of TiB2 Nanoparticles in Aluminium Piston Alloys for High Performance at Elevated Temperature, Nanomanufacturing and Metrology, 2018, 1, p 248–251.CrossRef Y.J. Zhang, S. Amirkhanlou and S.X. Ji, Reinforcement of TiB2 Nanoparticles in Aluminium Piston Alloys for High Performance at Elevated Temperature, Nanomanufacturing and Metrology, 2018, 1, p 248–251.CrossRef
5.
Zurück zum Zitat A. Ercetin, Application of the Hot Press Method to Produce New Mg Alloys: Characterization, Mechanical Properties, and Effect of Al Addition, J. Mater. Eng. Perform., 2021, 30, p 4254–4262.CrossRef A. Ercetin, Application of the Hot Press Method to Produce New Mg Alloys: Characterization, Mechanical Properties, and Effect of Al Addition, J. Mater. Eng. Perform., 2021, 30, p 4254–4262.CrossRef
6.
Zurück zum Zitat H.L. Huang, C.B. Hu, D.F. Song, Z.H. Jia and N. Zhou, Microstructure Characteristics and Elevated-Temperature Tensile Properties of Al-7Si-0.3Mg Alloys with Zr and Hf Addition, J. Mater. Eng. Perform., 2021, 30, p 9059–9066.CrossRef H.L. Huang, C.B. Hu, D.F. Song, Z.H. Jia and N. Zhou, Microstructure Characteristics and Elevated-Temperature Tensile Properties of Al-7Si-0.3Mg Alloys with Zr and Hf Addition, J. Mater. Eng. Perform., 2021, 30, p 9059–9066.CrossRef
7.
Zurück zum Zitat T.T. Huang, F. Liu, Z.Y. Liu and G.Y. He, Evolution of Microstructure, Texture, and Hardness in an Al-Cu-Mg Alloy during Annealing, J. Mater. Eng. Perform., 2022, 31, p 1419–1431.CrossRef T.T. Huang, F. Liu, Z.Y. Liu and G.Y. He, Evolution of Microstructure, Texture, and Hardness in an Al-Cu-Mg Alloy during Annealing, J. Mater. Eng. Perform., 2022, 31, p 1419–1431.CrossRef
8.
Zurück zum Zitat C.R. Mayer, L.W. Yang, S.S. Singh, J. Llorca, J.M. Molina-Aldareguia, Y.L. Shen and N. Chawla, Anisotropy, Size, and Aspect Ratio Effects on Micropillar Compression of Al–SiC Nanolaminate Composites, Acta Mater., 2016, 114, p 25–32.CrossRef C.R. Mayer, L.W. Yang, S.S. Singh, J. Llorca, J.M. Molina-Aldareguia, Y.L. Shen and N. Chawla, Anisotropy, Size, and Aspect Ratio Effects on Micropillar Compression of Al–SiC Nanolaminate Composites, Acta Mater., 2016, 114, p 25–32.CrossRef
9.
Zurück zum Zitat P. Wang, C. Gammer, F. Brenne, T. Niendorf, J. Eckert and S. Scudino, A Heat Treatable TiB2/Al–3.5Cu–1.5Mg–1Si Composite Fabricated by Selective Laser Melting: Microstructure, Heat Treatment and Mechanical Properties, Compos. Part B, 2018, 147, p 162–168.CrossRef P. Wang, C. Gammer, F. Brenne, T. Niendorf, J. Eckert and S. Scudino, A Heat Treatable TiB2/Al–3.5Cu–1.5Mg–1Si Composite Fabricated by Selective Laser Melting: Microstructure, Heat Treatment and Mechanical Properties, Compos. Part B, 2018, 147, p 162–168.CrossRef
10.
Zurück zum Zitat J.H. Li, F.S. Hage, Q.M. Ramasse and P. Schumacher, The Nucleation Sequence of α–Al on TiB2 Particles in Al–Cu Alloys, Acta Mater., 2021, 206, 116652.CrossRef J.H. Li, F.S. Hage, Q.M. Ramasse and P. Schumacher, The Nucleation Sequence of α–Al on TiB2 Particles in Al–Cu Alloys, Acta Mater., 2021, 206, 116652.CrossRef
11.
Zurück zum Zitat S. Saha, M. Ghosh, A.K. Pramanick, C. Mondal and M. Joydeep, Microstructure and Mechanical Properties of Al/Cup/SiCp/TiCp-Based Hybrid Composites Fabricated by Spark Plasma Sintering, J. Mater. Eng. Perform., 2022, 31, p 424–438.CrossRef S. Saha, M. Ghosh, A.K. Pramanick, C. Mondal and M. Joydeep, Microstructure and Mechanical Properties of Al/Cup/SiCp/TiCp-Based Hybrid Composites Fabricated by Spark Plasma Sintering, J. Mater. Eng. Perform., 2022, 31, p 424–438.CrossRef
12.
Zurück zum Zitat A. Sharma, B. Tirumuruhan, G.S. Muthuvel, A.K. Gupta and R. Sujith, Optimization of Process Parameters of Boron Carbide-Reinforced Al-Zn-Mg-Cu Matrix Composite produced by Pressure-Assisted Sintering, J. Mater. Eng. Perform., 2022, 31, p 328–340.CrossRef A. Sharma, B. Tirumuruhan, G.S. Muthuvel, A.K. Gupta and R. Sujith, Optimization of Process Parameters of Boron Carbide-Reinforced Al-Zn-Mg-Cu Matrix Composite produced by Pressure-Assisted Sintering, J. Mater. Eng. Perform., 2022, 31, p 328–340.CrossRef
13.
Zurück zum Zitat F. Aydin, Investigation of Elevated Temperature Wear Behavior of Al 2024-BN Composites Using Statistical Techniques, J. Mater. Eng. Perform., 2021, 30, p 8560–8578.CrossRef F. Aydin, Investigation of Elevated Temperature Wear Behavior of Al 2024-BN Composites Using Statistical Techniques, J. Mater. Eng. Perform., 2021, 30, p 8560–8578.CrossRef
14.
Zurück zum Zitat S.M. Ognjanovic and M. Winterer, Optimizing Particle Characteristics of Nanocrystalline Aluminum Nitride, Powder Technol., 2018, 326, p 488–497.CrossRef S.M. Ognjanovic and M. Winterer, Optimizing Particle Characteristics of Nanocrystalline Aluminum Nitride, Powder Technol., 2018, 326, p 488–497.CrossRef
15.
Zurück zum Zitat M. Balog, P. Krizik, P. Svec Jr. and L. Orovcik, Industrially Fabricated in-situ Al–AlN Metal Matrix Composites (part A): Processing, Thermal Stability, and Microstructure, J. Alloy Compd., 2021, 883, p 160858.CrossRef M. Balog, P. Krizik, P. Svec Jr. and L. Orovcik, Industrially Fabricated in-situ Al–AlN Metal Matrix Composites (part A): Processing, Thermal Stability, and Microstructure, J. Alloy Compd., 2021, 883, p 160858.CrossRef
16.
Zurück zum Zitat E. Osterlund, J. Kinnunen, V. Rontu, A. Torkkeli and M.P. Krockel, Mechanical Properties and Reliability of Aluminum Nitride Thin Films, J. Alloy Compd., 2019, 772, p 306–313.CrossRef E. Osterlund, J. Kinnunen, V. Rontu, A. Torkkeli and M.P. Krockel, Mechanical Properties and Reliability of Aluminum Nitride Thin Films, J. Alloy Compd., 2019, 772, p 306–313.CrossRef
17.
Zurück zum Zitat E.S. Caballero, J. Cintas, F.G. Cuevas, J.M. Montes, F. Ternero and F.J.V. Reina, Synthesis and Characterization of in situ–Reinforced Al–AlN Composites Produced by Mechanical Alloying, J. Alloy Compd., 2017, 728, p 640–644.CrossRef E.S. Caballero, J. Cintas, F.G. Cuevas, J.M. Montes, F. Ternero and F.J.V. Reina, Synthesis and Characterization of in situ–Reinforced Al–AlN Composites Produced by Mechanical Alloying, J. Alloy Compd., 2017, 728, p 640–644.CrossRef
18.
Zurück zum Zitat Y.H. Xia, C.X. Cui, B.H. Han, H.T. Geng and L. Liu, Preparation of in–situ AlN–TiC Nanoparticles and their Refinement and Reinforcement Effects on Al–Zn–Mn–Cu alloy, J. Alloy Compd., 2021, 881, 160504.CrossRef Y.H. Xia, C.X. Cui, B.H. Han, H.T. Geng and L. Liu, Preparation of in–situ AlN–TiC Nanoparticles and their Refinement and Reinforcement Effects on Al–Zn–Mn–Cu alloy, J. Alloy Compd., 2021, 881, 160504.CrossRef
19.
Zurück zum Zitat R. Gostariani, E. Bagherpour, M. Rifai, R. Ebrahimi and H. Miyamoto, Fabrication of Al/AlN in–situ Nanocomposite Through Planetary Ball Milling and Hot Extrusion of Al/BN: Microstructural Evaluation and Mechanical Behavior, J. Alloy Compd., 2019, 768, p 329–339.CrossRef R. Gostariani, E. Bagherpour, M. Rifai, R. Ebrahimi and H. Miyamoto, Fabrication of Al/AlN in–situ Nanocomposite Through Planetary Ball Milling and Hot Extrusion of Al/BN: Microstructural Evaluation and Mechanical Behavior, J. Alloy Compd., 2019, 768, p 329–339.CrossRef
20.
Zurück zum Zitat H. Pouraliakbar, A.H. Monazzah, R. Bagheri, S.M. Reihani, G. Khalaj, A. Nazari and M.R. Jandaghi, Toughness Prediction in Functionally Graded Al6061/SiCp Composites Produced by roll-Bonding, Ceram. Int., 2014, 40, p 8809–8825.CrossRef H. Pouraliakbar, A.H. Monazzah, R. Bagheri, S.M. Reihani, G. Khalaj, A. Nazari and M.R. Jandaghi, Toughness Prediction in Functionally Graded Al6061/SiCp Composites Produced by roll-Bonding, Ceram. Int., 2014, 40, p 8809–8825.CrossRef
21.
Zurück zum Zitat Y.K. Kim, H. Pouraliakbar and S.I. Hong, Effect of Interfacial Intermetallic Compounds Evolution on the Mechanical Response and Fracture of Layered Ti/Cu/Ti Clad Materials, Mater. Sci. Eng. A, 2020, 772, 138802.CrossRef Y.K. Kim, H. Pouraliakbar and S.I. Hong, Effect of Interfacial Intermetallic Compounds Evolution on the Mechanical Response and Fracture of Layered Ti/Cu/Ti Clad Materials, Mater. Sci. Eng. A, 2020, 772, 138802.CrossRef
22.
Zurück zum Zitat Q. Guo, Z.Q. Li, L. Zhao, Z. Li, S.W. Feng and D. Zhang, Metal Matrix Composites with Microstructural Architectures, Materials China, 2016, 35(9), p 641–650. Q. Guo, Z.Q. Li, L. Zhao, Z. Li, S.W. Feng and D. Zhang, Metal Matrix Composites with Microstructural Architectures, Materials China, 2016, 35(9), p 641–650.
23.
Zurück zum Zitat L. Geng and G.H. Fan, Progress on Strengthening and Toughening Mechanism for Metal Matrix Composites by Configuration Design, Materials China, 2016, 35(9), p 686–693. L. Geng and G.H. Fan, Progress on Strengthening and Toughening Mechanism for Metal Matrix Composites by Configuration Design, Materials China, 2016, 35(9), p 686–693.
24.
Zurück zum Zitat F. Scherm, R. Volkl, A. Neubrand, F. Bosbach and U. Glatzel, Mechanical Characterisation of Interpenetrating Network metal–Ceramic Composites, Mater. Sci. Eng. A, 2010, 527, p 1260–1265.CrossRef F. Scherm, R. Volkl, A. Neubrand, F. Bosbach and U. Glatzel, Mechanical Characterisation of Interpenetrating Network metal–Ceramic Composites, Mater. Sci. Eng. A, 2010, 527, p 1260–1265.CrossRef
25.
Zurück zum Zitat A. Ercetin and D.Y. Pimenov, Microstructure, Mechanical, and Corrosion Behavior of Al2O3 Reinforced Mg2Zn Matrix Magnesium Composites, Materials, 2021, 14, p 4819.CrossRef A. Ercetin and D.Y. Pimenov, Microstructure, Mechanical, and Corrosion Behavior of Al2O3 Reinforced Mg2Zn Matrix Magnesium Composites, Materials, 2021, 14, p 4819.CrossRef
26.
Zurück zum Zitat J.C. Ye, B.Q. Han, Z. Lee, B. Ahn, S.R. Nutt and J.M. Schoenung, A tri–Modal Aluminum Based Composite with Super–High Strength, Scripta Mater., 2005, 53, p 481–486.CrossRef J.C. Ye, B.Q. Han, Z. Lee, B. Ahn, S.R. Nutt and J.M. Schoenung, A tri–Modal Aluminum Based Composite with Super–High Strength, Scripta Mater., 2005, 53, p 481–486.CrossRef
27.
Zurück zum Zitat X. Ma, Y.F. Zhao, W.J. Tian, Z. Qian, H.W. Chen, Y.Y. Wu and X.F. Liu, A novel Al Matrix Composite Reinforced by nano–AlNp Network, Sci. Rep., 2016, 6, p 34919.CrossRef X. Ma, Y.F. Zhao, W.J. Tian, Z. Qian, H.W. Chen, Y.Y. Wu and X.F. Liu, A novel Al Matrix Composite Reinforced by nano–AlNp Network, Sci. Rep., 2016, 6, p 34919.CrossRef
28.
Zurück zum Zitat G.X. Hu, X. Cai and Y.H. Rong, Fundamentals of Materials Science, Shanghai Jiao Tong University Press, China, 2010. G.X. Hu, X. Cai and Y.H. Rong, Fundamentals of Materials Science, Shanghai Jiao Tong University Press, China, 2010.
29.
Zurück zum Zitat N. Chawla and K.K. Chawla, Metal Matrix Composites, 2nd ed. Springer-Verlag, New York, New York, 2013.CrossRef N. Chawla and K.K. Chawla, Metal Matrix Composites, 2nd ed. Springer-Verlag, New York, New York, 2013.CrossRef
30.
Zurück zum Zitat B. Sadeghi, Z.Q. Tan, J.H. Qi, Z.Q. Li, X.R. Min, Z.M. Yue and G.L. Fan, Enhanced Mechanical Properties of CNT/Al Composite Through Tailoring Grain Interior/grain Boundary Affected Zones, Compos. Part B, 2021, 11, 109133.CrossRef B. Sadeghi, Z.Q. Tan, J.H. Qi, Z.Q. Li, X.R. Min, Z.M. Yue and G.L. Fan, Enhanced Mechanical Properties of CNT/Al Composite Through Tailoring Grain Interior/grain Boundary Affected Zones, Compos. Part B, 2021, 11, 109133.CrossRef
31.
Zurück zum Zitat E. Biyikli, D. Canadinc, H.J. Maier, T. Niendorf and S. Top, Three–Dimensional Modeling of the Grain Boundary Misorientation Angle Distribution based on Two–Dimensional Experimental Texture Measurements, Mater. Sci. Eng. A, 2010, 527, p 5604–5612.CrossRef E. Biyikli, D. Canadinc, H.J. Maier, T. Niendorf and S. Top, Three–Dimensional Modeling of the Grain Boundary Misorientation Angle Distribution based on Two–Dimensional Experimental Texture Measurements, Mater. Sci. Eng. A, 2010, 527, p 5604–5612.CrossRef
32.
Zurück zum Zitat J.Q. Yu, G.Q. Zhao, C.S. Zhang and L. Chen, Dynamic Evolution of Grain Structure and Micro–texture along a Welding Path of Aluminum Alloy Profiles Extruded by Porthole Dies, Mater. Sci. Eng. A, 2017, 682, p 679–690.CrossRef J.Q. Yu, G.Q. Zhao, C.S. Zhang and L. Chen, Dynamic Evolution of Grain Structure and Micro–texture along a Welding Path of Aluminum Alloy Profiles Extruded by Porthole Dies, Mater. Sci. Eng. A, 2017, 682, p 679–690.CrossRef
33.
Zurück zum Zitat Y.J. Lin, H.M. Wen, Y. Li, B. Wen, W. Liu and E.J. Lavernia, An Analytical Model for Stress–Induced Grain Growth in the Presence of Both Second–Phase Particles and Solute Segregation at Grain Boundaries, Acta Mater., 2015, 82, p 304–315.CrossRef Y.J. Lin, H.M. Wen, Y. Li, B. Wen, W. Liu and E.J. Lavernia, An Analytical Model for Stress–Induced Grain Growth in the Presence of Both Second–Phase Particles and Solute Segregation at Grain Boundaries, Acta Mater., 2015, 82, p 304–315.CrossRef
34.
Zurück zum Zitat J.S. Pan, J.M. Tong and M.B. Tian, Fundamentals of Materials Science, 3rd ed. Tsinghua University Press, China, 2019. J.S. Pan, J.M. Tong and M.B. Tian, Fundamentals of Materials Science, 3rd ed. Tsinghua University Press, China, 2019.
35.
Zurück zum Zitat M.E. Kassner, C.S. Campbell and R. Ermagan, Large–Strain Softening of Aluminum in Shear at Elevated–Temperatures: Influence of Dislocation Climb, Metall. and Mater. Trans. A, 2017, 48, p 3971–3974.CrossRef M.E. Kassner, C.S. Campbell and R. Ermagan, Large–Strain Softening of Aluminum in Shear at Elevated–Temperatures: Influence of Dislocation Climb, Metall. and Mater. Trans. A, 2017, 48, p 3971–3974.CrossRef
36.
Zurück zum Zitat T.S. Liu, F. Qiu, B.X. Dong, R. Geng, M. Zha, H.Y. Yang, S.L. Shu and Q.C. Jiang, Role of Trace Nanoparticles in Establishing Fully Optimized Microstructure Configuration of cold–rolled Al Alloy, Mater. Des., 2021, 206, 109743.CrossRef T.S. Liu, F. Qiu, B.X. Dong, R. Geng, M. Zha, H.Y. Yang, S.L. Shu and Q.C. Jiang, Role of Trace Nanoparticles in Establishing Fully Optimized Microstructure Configuration of cold–rolled Al Alloy, Mater. Des., 2021, 206, 109743.CrossRef
37.
Zurück zum Zitat Z.H. Zhang, T. Topping, Y. Li, R. Vogt, Y.Z. Zhou, C. Haines, J. Paras, D. Kapoor, J.M. Schoenung and E.J. Lavernia, Mechanical Behavior of Ultrafine–Grained Al Composites Reinforced with B4C Nanoparticles, Scr. Mater., 2011, 65, p 652–655.CrossRef Z.H. Zhang, T. Topping, Y. Li, R. Vogt, Y.Z. Zhou, C. Haines, J. Paras, D. Kapoor, J.M. Schoenung and E.J. Lavernia, Mechanical Behavior of Ultrafine–Grained Al Composites Reinforced with B4C Nanoparticles, Scr. Mater., 2011, 65, p 652–655.CrossRef
38.
Zurück zum Zitat H.B. Yang, T. Gao, G.L. Liu, X.J. Zhao, H.W. Chen, H.C. Wang, J.F. Nie and X.F. Liu, Simultaneously Improving Strength and Ductility for Al–Cu–Mg alloy via Threadiness Array of TiC Nanoparticles, Materiallia, 2019, 6, 100333.CrossRef H.B. Yang, T. Gao, G.L. Liu, X.J. Zhao, H.W. Chen, H.C. Wang, J.F. Nie and X.F. Liu, Simultaneously Improving Strength and Ductility for Al–Cu–Mg alloy via Threadiness Array of TiC Nanoparticles, Materiallia, 2019, 6, 100333.CrossRef
39.
Zurück zum Zitat E. Smith and J.T. Barnby, Nucleation of Grain–Boundary Cavities During High Temperature Creep, Metal Science Journal, 1967, 1, p 1–4.CrossRef E. Smith and J.T. Barnby, Nucleation of Grain–Boundary Cavities During High Temperature Creep, Metal Science Journal, 1967, 1, p 1–4.CrossRef
40.
Zurück zum Zitat K. Ma, Z.Y. Liu, X.X. Zhang, B.L. Xiao and Z.Y. Ma, Hot Deformation Behavior and Microstructure Evolution of Carbon Nanotube/7055Al Composite, J. Alloy Compd., 2021, 854, 157275.CrossRef K. Ma, Z.Y. Liu, X.X. Zhang, B.L. Xiao and Z.Y. Ma, Hot Deformation Behavior and Microstructure Evolution of Carbon Nanotube/7055Al Composite, J. Alloy Compd., 2021, 854, 157275.CrossRef
41.
Zurück zum Zitat C.H. Hsueh and P.F. Becher, Interfacial Shear Debonding Problems in Fiber–Reinforced Ceramic Composites, Acta Mater., 1998, 46, p 3237–3245.CrossRef C.H. Hsueh and P.F. Becher, Interfacial Shear Debonding Problems in Fiber–Reinforced Ceramic Composites, Acta Mater., 1998, 46, p 3237–3245.CrossRef
Metadaten
Titel
Revealing the Relationship Between AlN Architectures and the Strengthening Mechanism of the AlN/Al Composites at 350 °C
verfasst von
Xia Ma
Yongfeng Zhao
Kewei Xie
Kai Zhao
Xiangfa Liu
Publikationsdatum
22.06.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07063-1

Weitere Artikel der Ausgabe 12/2022

Journal of Materials Engineering and Performance 12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.