Skip to main content

2014 | OriginalPaper | Buchkapitel

Reversible Logic Based Design and Test of Field Coupled Nanocomputing Circuits

verfasst von : Himanshu Thapliyal, Nagarajan Ranganathan, Saurabh Kotiyal

Erschienen in: Field-Coupled Nanocomputing

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Reversible computing is based on logic circuits that can generate unique output vector from each input vector, and vice versa, that is, there is a one-to-one mapping between the input and the output vectors. Reversible computing is the only solution for non-dissipative ultra low power green computing. Conservative reversible circuits are a specific type of reversible circuits, in which there would be an equal number of 1s in the outputs as there would be on the inputs, in addition to one-to-one mapping. This work illustrates the application of reversible logic towards testing of faults in traditional and reversible field coupled nanocircuits (Portions of this chapter are based on [2]. The enhancement is comprehensive treatment of: basics of reversible computing, motivation for reversible computing, background on conservative logic, basics of QCA computing, such as QCA logic devices and QCA clocking, related work etc. Several new reversible testable designs are introduced such as design of testable reversible T latch, design of testable asynchronous set/reset D latch and master-slave D flip-flop, design of testable reversible complex sequential circuits. QCA layouts of conservative logic gates are introduced with internal design details of QCA logic devices. Complete fault patterns information and analysis are provided for conservative logic gates. The synthesis of non-reversible testable design based on MX-cqca gate is extended to MX-cqca based implementation of standard functions. The significance of this work and broader prospective for future directions is also presented.). We propose the design of two vectors testable sequential circuits based on conservative logic gates. The proposed sequential circuits based on conservative logic gates outperform the sequential circuits implemented in classical gates in terms of testability. Any sequential circuit based on conservative logic gates can be tested for classical unidirectional stuck-at faults using only two test vectors. The two test vectors are all 1s, and all 0s. The designs of two vector testable latches, master-slave flip-flops, double edge triggered flip-flops, asynchronous set/reset D latch and D flip-flop are presented. The importance of the proposed work lies in the fact that it provides the design of reversible sequential circuits completely testable for any stuck-at fault by only two test vectors, thereby eliminating the need for any type of scan-path access to internal memory cells. The reversible designs of the double edge triggered flip-flop, ring counter and Johnson Counter are proposed for the first time in literature. We are showing the application of the proposed approach towards 100 % fault coverage for single missing/additional cell defect in the QCA layout of the Fredkin gate. We are also presenting a new conservative logic gate called Multiplexer Conservative QCA gate (MX-cqca) that is not reversible in nature but has similar properties as the Fredkin gate of working as 2:1 multiplexer. The proposed MX-cqca gate surpasses the Fredkin gate in terms of complexity (the number of majority voter), speed and area.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat IEEE. All rights reserved. Reprinted with permission from Thapliyal, H., Ranganathan, N., Kotiyal, S.: Design of testable reversible sequential circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(7), 1201–1209 (2013) IEEE. All rights reserved. Reprinted with permission from Thapliyal, H., Ranganathan, N., Kotiyal, S.: Design of testable reversible sequential circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(7), 1201–1209 (2013)
3.
Zurück zum Zitat Alam, M.T., Kurtz, S.J., Siddiq, M.A.J., Niemier, M.T., Bernstein, G.H., Hu, X.S., Porod, W.: On-chip clocking of nanomagnet logic lines and gates. IEEE Trans. Nanotechnol. 11(2), 273–286 (2012)CrossRef Alam, M.T., Kurtz, S.J., Siddiq, M.A.J., Niemier, M.T., Bernstein, G.H., Hu, X.S., Porod, W.: On-chip clocking of nanomagnet logic lines and gates. IEEE Trans. Nanotechnol. 11(2), 273–286 (2012)CrossRef
4.
Zurück zum Zitat Anderson, N., Ercan, I., Ganesh, N.: Toward nanoprocessor thermodynamics. In: 2012 12th IEEE Conference on Nanotechnology (IEEE-NANO), pp. 1–6 (2012) Anderson, N., Ercan, I., Ganesh, N.: Toward nanoprocessor thermodynamics. In: 2012 12th IEEE Conference on Nanotechnology (IEEE-NANO), pp. 1–6 (2012)
5.
Zurück zum Zitat Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)CrossRefMATH Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)CrossRefMATH
6.
Zurück zum Zitat Bhanja, S., Ottavi, M., Lombardi, F., Pontarelli, S.: QCA circuits for robust coplanar crossing. J. Electron. Test. 23(2–3), 193–210 (2007)CrossRef Bhanja, S., Ottavi, M., Lombardi, F., Pontarelli, S.: QCA circuits for robust coplanar crossing. J. Electron. Test. 23(2–3), 193–210 (2007)CrossRef
7.
Zurück zum Zitat Bhanja, S., Pulecio, J.: A review of magnetic cellular automata systems. In: 2011 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2373–2376. IEEE (2011) Bhanja, S., Pulecio, J.: A review of magnetic cellular automata systems. In: 2011 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2373–2376. IEEE (2011)
8.
Zurück zum Zitat Bubna, M., Goyal, N., Sengupta, I.: A DFT methodology for detecting bridging faults in reversible logic circuits. In: Proceedings of 2007 IEEE Region 10 Conference, Tencon 2007, Taipei, pp. 1–4, Oct 2007 Bubna, M., Goyal, N., Sengupta, I.: A DFT methodology for detecting bridging faults in reversible logic circuits. In: Proceedings of 2007 IEEE Region 10 Conference, Tencon 2007, Taipei, pp. 1–4, Oct 2007
9.
Zurück zum Zitat Cho, H., Swartzlander, E.: Adder designs and analyses for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 6(3), 374–383 (2007)CrossRef Cho, H., Swartzlander, E.: Adder designs and analyses for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 6(3), 374–383 (2007)CrossRef
10.
Zurück zum Zitat Cho, H., Swartzlander, E.: Serial parallel multiplier design in quantum-dot cellular automata. In: Proceedings of the IEEE Symposium Computer Arithmetic (ARITH), Montepellier, France, pp. 7–15 (2007) Cho, H., Swartzlander, E.: Serial parallel multiplier design in quantum-dot cellular automata. In: Proceedings of the IEEE Symposium Computer Arithmetic (ARITH), Montepellier, France, pp. 7–15 (2007)
11.
Zurück zum Zitat Chuang, M.L., Wang, C.Y.: Synthesis of reversible sequential elements. J. Emerg. Technol. Comput. Syst. 3(4), 1–19 (2008)CrossRefMathSciNet Chuang, M.L., Wang, C.Y.: Synthesis of reversible sequential elements. J. Emerg. Technol. Comput. Syst. 3(4), 1–19 (2008)CrossRefMathSciNet
12.
Zurück zum Zitat Dalui, M., Sen, B., Sikdar, B.K.: Fault tolerant QCA logic design with coupled majority-minority gate. Int. J. Comput. Appl. 1(29), 81–87 (2010) Dalui, M., Sen, B., Sikdar, B.K.: Fault tolerant QCA logic design with coupled majority-minority gate. Int. J. Comput. Appl. 1(29), 81–87 (2010)
13.
Zurück zum Zitat Ercan, I., Anderson, N.: Heat dissipation bounds for nanocomputing: theory and application to QCA. In: 2011 11th IEEE Conference on Nanotechnology (IEEE-NANO), pp. 1289–1294 (2011) Ercan, I., Anderson, N.: Heat dissipation bounds for nanocomputing: theory and application to QCA. In: 2011 11th IEEE Conference on Nanotechnology (IEEE-NANO), pp. 1289–1294 (2011)
14.
Zurück zum Zitat Farazmand, N., Zamani, M., Tahoori, M.B.: Online fault testing of reversible logic using dual rail coding. In: Proceedings of IEEE International On-Line Testing Symposium, pp. 204–205, May 2010 Farazmand, N., Zamani, M., Tahoori, M.B.: Online fault testing of reversible logic using dual rail coding. In: Proceedings of IEEE International On-Line Testing Symposium, pp. 204–205, May 2010
15.
Zurück zum Zitat Fijany, A., Toomarian, B.N.: New design for quantum dots cellular automata to obtain fault tolerant logic gates. J. Nanopart. Res. 3(1), 27–37 (2001)CrossRef Fijany, A., Toomarian, B.N.: New design for quantum dots cellular automata to obtain fault tolerant logic gates. J. Nanopart. Res. 3(1), 27–37 (2001)CrossRef
16.
Zurück zum Zitat Fijany, A., Toomarian, B.N.: New design for quantum dots cellular automata to obtain fault tolerant logic gates. J. Nanopart. Res. 3, 27–37 (2001)CrossRef Fijany, A., Toomarian, B.N.: New design for quantum dots cellular automata to obtain fault tolerant logic gates. J. Nanopart. Res. 3, 27–37 (2001)CrossRef
17.
Zurück zum Zitat Frank, M.: Approaching the physical limits of computing. In: Proceedings of ISMVL 2005, The Thirty-Fifth International Symposium on Multiple-Valued Logic, Calgary, Canada, pp. 168–185, May 2005 Frank, M.: Approaching the physical limits of computing. In: Proceedings of ISMVL 2005, The Thirty-Fifth International Symposium on Multiple-Valued Logic, Calgary, Canada, pp. 168–185, May 2005
19.
Zurück zum Zitat Frost-Murphy, S., Ottavi, M., Frank, M., DeBenedictis, E.: On the design of reversible QDCA systems. Technical Report SAND2006-5990, Sandia National Laboratories (2006) Frost-Murphy, S., Ottavi, M., Frank, M., DeBenedictis, E.: On the design of reversible QDCA systems. Technical Report SAND2006-5990, Sandia National Laboratories (2006)
20.
Zurück zum Zitat Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact synthesis of elementary quantum gate circuits for reversible functions with dont cares. In: Proceedings of the International Symposium on Multi-Valued Logic, Dallas, Texas, pp. 214–219, May 2008 Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact synthesis of elementary quantum gate circuits for reversible functions with dont cares. In: Proceedings of the International Symposium on Multi-Valued Logic, Dallas, Texas, pp. 214–219, May 2008
21.
Zurück zum Zitat Große, D., Wille, R., Dueck, G., Drechsler, R.: Exact multiple control toffoli network synthesis with SAT techniques. IEEE Trans. CAD 28(5), 703175 (2009)CrossRef Große, D., Wille, R., Dueck, G., Drechsler, R.: Exact multiple control toffoli network synthesis with SAT techniques. IEEE Trans. CAD 28(5), 703175 (2009)CrossRef
22.
Zurück zum Zitat Gupta, P., Agarwal, A., Jha, N.K.: An algorithm for synthesis of reversible logic ciruits. IEEE Trans. Comput. Aided Des. 25(11), 2317–2330 (2006)CrossRef Gupta, P., Agarwal, A., Jha, N.K.: An algorithm for synthesis of reversible logic ciruits. IEEE Trans. Comput. Aided Des. 25(11), 2317–2330 (2006)CrossRef
23.
Zurück zum Zitat Gupta, P., Jha, N.K., Lingappan, L.: A test generation framework for quantum cellular automata circuits. IEEE Trans. VLSI Sys. 15(1), 24–36 (2007)CrossRef Gupta, P., Jha, N.K., Lingappan, L.: A test generation framework for quantum cellular automata circuits. IEEE Trans. VLSI Sys. 15(1), 24–36 (2007)CrossRef
24.
Zurück zum Zitat Hanninen, I., Takala, J.: Robust adders based on quantum-dot cellular automata, In: Proceedings of the IEEE International Conference Application-Specific Systems, Architectures and Processors (ASAP), Montreal, QC, Canada, pp. 391–396, Jul 2007 Hanninen, I., Takala, J.: Robust adders based on quantum-dot cellular automata, In: Proceedings of the IEEE International Conference Application-Specific Systems, Architectures and Processors (ASAP), Montreal, QC, Canada, pp. 391–396, Jul 2007
25.
Zurück zum Zitat Huang, J., Momenzadeh, M., Lombardi, F.: Analysis of missing and additional cell defects in sequential quantum-dot cellular automata. Integr. VLSI J. 40(1), 503–515 (2007)CrossRef Huang, J., Momenzadeh, M., Lombardi, F.: Analysis of missing and additional cell defects in sequential quantum-dot cellular automata. Integr. VLSI J. 40(1), 503–515 (2007)CrossRef
26.
Zurück zum Zitat Jin, Z.: Fabrication and measurement of molecular quantum cellular automata (QCA) device. Ph.D. thesis, University of Notre Dame (2006) Jin, Z.: Fabrication and measurement of molecular quantum cellular automata (QCA) device. Ph.D. thesis, University of Notre Dame (2006)
27.
Zurück zum Zitat Kartschoke, P.: Implementation issues in conservative logic networks. In: M.S.E.E. Thesis, University of Virginia, Charlottesville, VA (1992) Kartschoke, P.: Implementation issues in conservative logic networks. In: M.S.E.E. Thesis, University of Virginia, Charlottesville, VA (1992)
28.
Zurück zum Zitat Kim, K., Wu, K., Karri, R.: The robust QCA adder designs using composable QCA building blocks. IEEE Trans. Comput. Aided Des. 26(1), 176–183 (2007)CrossRef Kim, K., Wu, K., Karri, R.: The robust QCA adder designs using composable QCA building blocks. IEEE Trans. Comput. Aided Des. 26(1), 176–183 (2007)CrossRef
29.
Zurück zum Zitat Kong, K., Shang, Y., Lu, R.: An optimized majority logic synthesis methodology for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 9(2), 170–183 (2010)CrossRef Kong, K., Shang, Y., Lu, R.: An optimized majority logic synthesis methodology for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 9(2), 170–183 (2010)CrossRef
30.
Zurück zum Zitat Kostinski, N., Fok, M.P., Prucnal, P.R.: Experimental demonstration of an all-optical fiber-based Fredkin gate. Opt. Lett. 34(18), 2766–2768 (2009)CrossRef Kostinski, N., Fok, M.P., Prucnal, P.R.: Experimental demonstration of an all-optical fiber-based Fredkin gate. Opt. Lett. 34(18), 2766–2768 (2009)CrossRef
31.
32.
Zurück zum Zitat Chang, L., Frank, D.J., Montoye, R.K., Koester, S.J., Ji, B.L., Coteus, P.W., Dennard, R.H., Haensch, W.: Practical strategies for power-efficient computing technologies. Proc. IEEE 98(2), 215–236 (2010)CrossRef Chang, L., Frank, D.J., Montoye, R.K., Koester, S.J., Ji, B.L., Coteus, P.W., Dennard, R.H., Haensch, W.: Practical strategies for power-efficient computing technologies. Proc. IEEE 98(2), 215–236 (2010)CrossRef
33.
Zurück zum Zitat Lent, C., Isaksen, B., Lieberman, M.: Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125(4), 1056–1063 (2003)CrossRef Lent, C., Isaksen, B., Lieberman, M.: Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125(4), 1056–1063 (2003)CrossRef
34.
Zurück zum Zitat Lent, C., Tougaw, P.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)CrossRef Lent, C., Tougaw, P.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)CrossRef
35.
Zurück zum Zitat Liu, W., Srivastava, S., Lu, L., O’Neill, M., Swartzlander, E.: Are QCA cryptographic circuits resistant to power analysis attack? IEEE Trans. Nanotechnol. 11(6), 1239–1251 (2012)CrossRef Liu, W., Srivastava, S., Lu, L., O’Neill, M., Swartzlander, E.: Are QCA cryptographic circuits resistant to power analysis attack? IEEE Trans. Nanotechnol. 11(6), 1239–1251 (2012)CrossRef
36.
Zurück zum Zitat Lu, Y., Liu, M., Lent, C.: Molecular quantum-dot cellular automata: from molecular structure to circuit dynamics. J. Appl. Phys. 102 (2007) (Article No. 034311) Lu, Y., Liu, M., Lent, C.: Molecular quantum-dot cellular automata: from molecular structure to circuit dynamics. J. Appl. Phys. 102 (2007) (Article No. 034311)
37.
Zurück zum Zitat Ma, X., Huang, J., Metra, C., Lombardi, F.: Reversible gates and testability of one dimensional arrays of molecular QCA. J. Elect. Test. 24(1–3), 1244–1245 (2008) Ma, X., Huang, J., Metra, C., Lombardi, F.: Reversible gates and testability of one dimensional arrays of molecular QCA. J. Elect. Test. 24(1–3), 1244–1245 (2008)
38.
Zurück zum Zitat Ma, X., Huang, J., Metra, C., Lombardi, F.: Detecting multiple faults in one-dimensional arrays of reversible qca gates. J. Elect. Test. 25(1), 39–54 (2009)CrossRef Ma, X., Huang, J., Metra, C., Lombardi, F.: Detecting multiple faults in one-dimensional arrays of reversible qca gates. J. Elect. Test. 25(1), 39–54 (2009)CrossRef
39.
Zurück zum Zitat Mahammad, S., Veezhinathan, K.: Constructing online testable circuits using reversible logic. IEEE Trans. Instrum. Meas. 59, 101–109 (2010)CrossRef Mahammad, S., Veezhinathan, K.: Constructing online testable circuits using reversible logic. IEEE Trans. Instrum. Meas. 59, 101–109 (2010)CrossRef
40.
Zurück zum Zitat Maslov, D., Dueck, G.W.: Reversible cascades with minimal garbage. IEEE Trans. Comput. Aided Des. 23(11), 1497–1509 (2004)CrossRef Maslov, D., Dueck, G.W.: Reversible cascades with minimal garbage. IEEE Trans. Comput. Aided Des. 23(11), 1497–1509 (2004)CrossRef
41.
Zurück zum Zitat Mathew, J., Rahaman, H., Jose, B.R., Pradhan, D.K.: Design of reversible finite field arithmetic circuits with error detection. In: 21st International Conference on VLSI Design 2008, VLSID 2008, pp. 453–459. IEEE (2008) Mathew, J., Rahaman, H., Jose, B.R., Pradhan, D.K.: Design of reversible finite field arithmetic circuits with error detection. In: 21st International Conference on VLSI Design 2008, VLSID 2008, pp. 453–459. IEEE (2008)
42.
Zurück zum Zitat Momenzadeh, M., Ottavi, M., Lombardi, F.: Modeling QCA defects at molecular level in combinational circuits. In: Proceedings of DFT in VLSI Systems, Monterey, CA, USA, pp. 208–216, Oct 2005 Momenzadeh, M., Ottavi, M., Lombardi, F.: Modeling QCA defects at molecular level in combinational circuits. In: Proceedings of DFT in VLSI Systems, Monterey, CA, USA, pp. 208–216, Oct 2005
43.
Zurück zum Zitat Morita, K.: Reversible computing and cellular automata-a survey. Theor. Comput. Sci. 395(1), 101–131 (2008)CrossRefMATH Morita, K.: Reversible computing and cellular automata-a survey. Theor. Comput. Sci. 395(1), 101–131 (2008)CrossRefMATH
44.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)MATH
45.
Zurück zum Zitat Niemier, M.T., Rodrigues, A.F., Kogge, P.M.: A potentially implementable FPGA for quantum dot cellular automata. In: Proceedings of the 1st Workshop on Non-Silicon Computation (NSC-1), Boston, MS (2002) Niemier, M.T., Rodrigues, A.F., Kogge, P.M.: A potentially implementable FPGA for quantum dot cellular automata. In: Proceedings of the 1st Workshop on Non-Silicon Computation (NSC-1), Boston, MS (2002)
46.
Zurück zum Zitat Ottavi, M., Schiano, L., Lombardi, F., Tougaw, D.: HDLQ: a HDL environment for QCA design. ACM J. Emerg. Tech. 2(4), 243–261 (2006)CrossRef Ottavi, M., Schiano, L., Lombardi, F., Tougaw, D.: HDLQ: a HDL environment for QCA design. ACM J. Emerg. Tech. 2(4), 243–261 (2006)CrossRef
47.
Zurück zum Zitat Parhami, B.: Fault-tolerant reversible circuits. In: Proceedings of 40th Asilomar Conference Signals, Systems, and Computers, Pacific Grove, CA, pp. 1726–1729, Nov 2006 Parhami, B.: Fault-tolerant reversible circuits. In: Proceedings of 40th Asilomar Conference Signals, Systems, and Computers, Pacific Grove, CA, pp. 1726–1729, Nov 2006
48.
Zurück zum Zitat Patel, K.N., Hayes, J.P., Markov, I.L.: Fault testing for reversible circuits. IEEE Trans. CAD 23, 410–416 (2004)CrossRef Patel, K.N., Hayes, J.P., Markov, I.L.: Fault testing for reversible circuits. IEEE Trans. CAD 23, 410–416 (2004)CrossRef
49.
Zurück zum Zitat Pedram, M., Wu, Q., Wu, X.: A new design for double edge triggered flip-flops. In: Proceedings of the Asia South Pacific Design Automation Conference, Yokahama, pp. 417–421 (1998) Pedram, M., Wu, Q., Wu, X.: A new design for double edge triggered flip-flops. In: Proceedings of the Asia South Pacific Design Automation Conference, Yokahama, pp. 417–421 (1998)
50.
Zurück zum Zitat Polian, I., Fiehn, T., Becker, B., Hayes, J.P.: A family of logical fault models for reversible circuits. In: ATS ’05: Proceedings of the 14th Asian Test Symposium on Asian Test Symposium, Kolkata, India, pp. 422–427 (2005) Polian, I., Fiehn, T., Becker, B., Hayes, J.P.: A family of logical fault models for reversible circuits. In: ATS ’05: Proceedings of the 14th Asian Test Symposium on Asian Test Symposium, Kolkata, India, pp. 422–427 (2005)
51.
Zurück zum Zitat Prasad, A.K., Shende, V., Markov, I., Hayes, J., Patel, K.N.: Data structures and algorithms for simplifying reversible circuits. ACM JETC 2(4), 277–293 (2006)CrossRef Prasad, A.K., Shende, V., Markov, I., Hayes, J., Patel, K.N.: Data structures and algorithms for simplifying reversible circuits. ACM JETC 2(4), 277–293 (2006)CrossRef
52.
Zurück zum Zitat Pulecio, J.F., Bhanja, S.: Magnetic cellular automata coplanar cross wire systems. J. Appl. Phys. 107(3), 034308 (2010)CrossRef Pulecio, J.F., Bhanja, S.: Magnetic cellular automata coplanar cross wire systems. J. Appl. Phys. 107(3), 034308 (2010)CrossRef
53.
Zurück zum Zitat Pulecio, J., Pendru, P., Kumari, A., Bhanja, S.: Magnetic cellular automata wire architectures. IEEE Trans. Nanotechnol. 99, 1 (2011) Pulecio, J., Pendru, P., Kumari, A., Bhanja, S.: Magnetic cellular automata wire architectures. IEEE Trans. Nanotechnol. 99, 1 (2011)
54.
Zurück zum Zitat Rahaman, H., Kole, D.K., Das, D.K., Bhattacharya, B.B.: On the detection of missing gate faults in reversible circuits by a universal test set. In: Proceedings VLSI Design 2008, 21st International Conference on VLSI Design, Hyderabad, India, pp. 163–168, Jan 2008 Rahaman, H., Kole, D.K., Das, D.K., Bhattacharya, B.B.: On the detection of missing gate faults in reversible circuits by a universal test set. In: Proceedings VLSI Design 2008, 21st International Conference on VLSI Design, Hyderabad, India, pp. 163–168, Jan 2008
55.
Zurück zum Zitat Ren, J., Semenov, V.K.: Progress with physically and logically reversible superconducting digital circuits. IEEE Trans. Appl. Supercond. 21(3), 780–786 (2011)CrossRef Ren, J., Semenov, V.K.: Progress with physically and logically reversible superconducting digital circuits. IEEE Trans. Appl. Supercond. 21(3), 780–786 (2011)CrossRef
56.
Zurück zum Zitat Ren, J., Semenov, V.K., Polyakov, Y.A., Averin, D.V., Tsai, J.S.: Progress towards reversible computing with nSQUID arrays. IEEE Trans. Appl. Supercond. 19, 961–967 (2009)CrossRef Ren, J., Semenov, V.K., Polyakov, Y.A., Averin, D.V., Tsai, J.S.: Progress towards reversible computing with nSQUID arrays. IEEE Trans. Appl. Supercond. 19, 961–967 (2009)CrossRef
57.
Zurück zum Zitat Rice, J.: A new look at reversible memory elements. In: Proceedings of International Symposium on Circuits and Systems (ISCAS) 2006, Kos, Greece, pp. 243–246, May 2006 Rice, J.: A new look at reversible memory elements. In: Proceedings of International Symposium on Circuits and Systems (ISCAS) 2006, Kos, Greece, pp. 243–246, May 2006
58.
Zurück zum Zitat Semenov, V.K., Danilov, G.V., Averin, D.V.: Classical and quantum operation modes of the reversible Josephson-junction logic circuits. IEEE Trans. Appl. Supercond. 17, 455–461 (2007)CrossRef Semenov, V.K., Danilov, G.V., Averin, D.V.: Classical and quantum operation modes of the reversible Josephson-junction logic circuits. IEEE Trans. Appl. Supercond. 17, 455–461 (2007)CrossRef
59.
Zurück zum Zitat Shende, V.V., Prasad, A., Markov, I., Hayes, J.: Synthesis of reversible logic circuits. IEEE Trans. CAD 22, 710–722 (2003)CrossRef Shende, V.V., Prasad, A., Markov, I., Hayes, J.: Synthesis of reversible logic circuits. IEEE Trans. CAD 22, 710–722 (2003)CrossRef
60.
Zurück zum Zitat Swaminathan, G.: Concurrent error detection techniques using parity. In: M.S.E.E. Thesis, University of Virginia, Charlottesville, VA (1989) Swaminathan, G.: Concurrent error detection techniques using parity. In: M.S.E.E. Thesis, University of Virginia, Charlottesville, VA (1989)
61.
Zurück zum Zitat Swaminathan, G., Aylor, J., Johnson, B.: Concurrent testing of VLSI circuits using conservative logic. In: Proceedings of International Conference on Computer Design (ICCD), Cambridge, MA, pp. 60–65, Sep 1990 Swaminathan, G., Aylor, J., Johnson, B.: Concurrent testing of VLSI circuits using conservative logic. In: Proceedings of International Conference on Computer Design (ICCD), Cambridge, MA, pp. 60–65, Sep 1990
62.
Zurück zum Zitat Tahoori, M.B., Huang, J., Momenzadeh, M., Lombardi, F.: Testing of quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 432–442 (2004)CrossRef Tahoori, M.B., Huang, J., Momenzadeh, M., Lombardi, F.: Testing of quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 432–442 (2004)CrossRef
63.
Zurück zum Zitat Taraphdara, C., Chattopadhyay, T., Roy, J.: Machzehnder interferometer-based all-optical reversible logic gate. Opt. Laser Technol. 42(2), 249–259 (2010)CrossRef Taraphdara, C., Chattopadhyay, T., Roy, J.: Machzehnder interferometer-based all-optical reversible logic gate. Opt. Laser Technol. 42(2), 249–259 (2010)CrossRef
64.
Zurück zum Zitat Taskin, B., Chiu, A., Salkind, J., Venutolo, D.: A shift-register-based QCA memory architecture. ACM J. Emerg. Tech. Comput. Sys. 5(1) (2009) (Article No. 4) Taskin, B., Chiu, A., Salkind, J., Venutolo, D.: A shift-register-based QCA memory architecture. ACM J. Emerg. Tech. Comput. Sys. 5(1) (2009) (Article No. 4)
65.
Zurück zum Zitat Thapliyal, H.: Design, synthesis and test of reversible logic circuits for emerging nanotechnologies. Ph.D. thesis, University of South Florida, Tampa, Dec 2011 Thapliyal, H.: Design, synthesis and test of reversible logic circuits for emerging nanotechnologies. Ph.D. thesis, University of South Florida, Tampa, Dec 2011
66.
Zurück zum Zitat Thapliyal, H., Ranganathan, N.: Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans. Nanotechnol. 9(1), 62–69 (2010)CrossRef Thapliyal, H., Ranganathan, N.: Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans. Nanotechnol. 9(1), 62–69 (2010)CrossRef
67.
Zurück zum Zitat Thapliyal, H., Srinivas, M.B., Zwolinski, M.: A beginning in the reversible logic synthesis of sequential circuits. In: Proceedings of the Military and Aerospace Programmable Logic Devices International Conference Washington, Sep 2005 Thapliyal, H., Srinivas, M.B., Zwolinski, M.: A beginning in the reversible logic synthesis of sequential circuits. In: Proceedings of the Military and Aerospace Programmable Logic Devices International Conference Washington, Sep 2005
68.
Zurück zum Zitat Thapliyal, H., Vinod, A.P.: Design of reversible sequential elements with feasibility of transistor implementation. In: Proceedings of the 2007 IEEE International Symposium on Circuits and Systems, New Orleans, USA, pp. 625–628 (May 2007) Thapliyal, H., Vinod, A.P.: Design of reversible sequential elements with feasibility of transistor implementation. In: Proceedings of the 2007 IEEE International Symposium on Circuits and Systems, New Orleans, USA, pp. 625–628 (May 2007)
69.
Zurück zum Zitat Thapliyal, H., Ranganathan, N.: Design of reversible sequential circuits optimizing quantum cost, delay and garbage outputs. ACM J. Emerg. Technol. Comput. Syst. 6(4), 14:1–14:35 (2010). (Article No. 14)CrossRef Thapliyal, H., Ranganathan, N.: Design of reversible sequential circuits optimizing quantum cost, delay and garbage outputs. ACM J. Emerg. Technol. Comput. Syst. 6(4), 14:1–14:35 (2010). (Article No. 14)CrossRef
70.
Zurück zum Zitat Tougaw, P., Lent, C.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)CrossRef Tougaw, P., Lent, C.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)CrossRef
71.
Zurück zum Zitat Tougaw, P., Lent, C.: Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80(8), 4722–4736 (1996)CrossRef Tougaw, P., Lent, C.: Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80(8), 4722–4736 (1996)CrossRef
72.
Zurück zum Zitat Vasudevan, D.P., Lala, P.K., Parkerson, J.P.: Reversible-logic design with online testability. IEEE Trans. Instrum. Meas. 55(2), 406–414 (2006)CrossRef Vasudevan, D.P., Lala, P.K., Parkerson, J.P.: Reversible-logic design with online testability. IEEE Trans. Instrum. Meas. 55(2), 406–414 (2006)CrossRef
73.
Zurück zum Zitat Wang, P., Niamat, M., Vemuru, S.: Minimal majority gate mapping of 4-variable functions for quantum cellular automata. In: 2011 11th IEEE Conference on Nanotechnology (IEEE-NANO), pp. 1307–1312. IEEE (2011) Wang, P., Niamat, M., Vemuru, S.: Minimal majority gate mapping of 4-variable functions for quantum cellular automata. In: 2011 11th IEEE Conference on Nanotechnology (IEEE-NANO), pp. 1307–1312. IEEE (2011)
74.
Zurück zum Zitat Wei, T., Wu, K., Karri, R., Orailoglu, A.: Fault tolerant quantum cellular array (QCA) design using triple modular redundancy with shifted operands. In: Proceedings of the 2005 Conference on Asia South Pacific Design Automation, Shanghai, China, pp. 1192–1195 (Jan 2005) Wei, T., Wu, K., Karri, R., Orailoglu, A.: Fault tolerant quantum cellular array (QCA) design using triple modular redundancy with shifted operands. In: Proceedings of the 2005 Conference on Asia South Pacific Design Automation, Shanghai, China, pp. 1192–1195 (Jan 2005)
75.
Zurück zum Zitat Yang, G., Song, X., Hung, W.N., Perkowski, M.A.: Bi-directional synthesis of 4-bit reversible circuits. Comput. J. 51(2), 207–215 (2008)CrossRef Yang, G., Song, X., Hung, W.N., Perkowski, M.A.: Bi-directional synthesis of 4-bit reversible circuits. Comput. J. 51(2), 207–215 (2008)CrossRef
76.
Zurück zum Zitat Zhang, R., Walus, K., Wang, W., Jullien, G.: Performance comparison of quantum dot cellular automata adders. In: Proceedings of the IEEE International Symposium Circiuts and Systems, Kobe, Japan, pp. 2522–2526 (May 2005) Zhang, R., Walus, K., Wang, W., Jullien, G.: Performance comparison of quantum dot cellular automata adders. In: Proceedings of the IEEE International Symposium Circiuts and Systems, Kobe, Japan, pp. 2522–2526 (May 2005)
77.
Zurück zum Zitat Zhang, R., Walus, K., Wang, W., Jullien, G.A.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 443–450 (2004)CrossRef Zhang, R., Walus, K., Wang, W., Jullien, G.A.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 443–450 (2004)CrossRef
78.
Zurück zum Zitat Zhong, J., Muzio, J.: Analyzing fault models for reversible logic circuits. IEEE Congr. Evol. Comput., Vancouver, BC, pp. 2422–2427 (2006) Zhong, J., Muzio, J.: Analyzing fault models for reversible logic circuits. IEEE Congr. Evol. Comput., Vancouver, BC, pp. 2422–2427 (2006)
Metadaten
Titel
Reversible Logic Based Design and Test of Field Coupled Nanocomputing Circuits
verfasst von
Himanshu Thapliyal
Nagarajan Ranganathan
Saurabh Kotiyal
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-43722-3_7

Premium Partner