Skip to main content
Erschienen in: International Journal of Steel Structures 4/2023

23.05.2023

Rotation Capacity Prediction of Open Web Steel Beams Using Artificial Neural Networks

verfasst von: Ganesh S. Gawande, Laxmikant M. Gupta

Erschienen in: International Journal of Steel Structures | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Artificial neural networks (ANN) are artificial intelligence technologies used in various fields of science and engineering to represent fascinating human behaviours. Engineers frequently deal with incomplete and noisy data, which is one of the areas where neural network (NN) shine. Aim of this study is to use an ANN approach to determine the rotation capacity of open web steel beams. Using a single point load applied at the span's centre, a theoretical, experimental, and analytical study was conducted. Following the results of experimental and analytical comparisons, the ABAQUS software tool was used to assess a total of 88 nonlinear finite element models. Local slenderness ratios of several finite element models differentiate them. Different elements comprising geometrical and mechanical features of open web steel beams were delivered as input to NN models, including flange and web slenderness, depth and breadth of section, load span and angle section. Suggested formulation's accuracy is confirmed by arithmetical regression created using analytical nonlinear finite element modelling and behaviour of the open web steel beam derived analytically was tested experimentally. Based on research and statistical analysis, the current study found that ANN has a great potential for forecasting the rotation capacity of open web steel beams.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adeli, H., & Yeh, C. (1989). Perceptron learning in engineering design. Computer Aided Civil Infrastructure Engieering, 4, 247–256.CrossRef Adeli, H., & Yeh, C. (1989). Perceptron learning in engineering design. Computer Aided Civil Infrastructure Engieering, 4, 247–256.CrossRef
Zurück zum Zitat AISC 360-16. Specification for Structural Steel Buildings, an American National Standard. Am. Inst. Steel Constr. Chicago 612 (2016). AISC 360-16. Specification for Structural Steel Buildings, an American National Standard. Am. Inst. Steel Constr. Chicago 612 (2016).
Zurück zum Zitat Al-Jabri, K. S., Al-Alawi, S. M., Al-Saidy, A. H., & Alnuaimi, A. S. (2007). Predicting the behaviour of semi-rigid joints in fire using an artificial neural network. Steel Structure, 7, 209–217. Al-Jabri, K. S., Al-Alawi, S. M., Al-Saidy, A. H., & Alnuaimi, A. S. (2007). Predicting the behaviour of semi-rigid joints in fire using an artificial neural network. Steel Structure, 7, 209–217.
Zurück zum Zitat Anastasiadis, A., Mosoarca, M., & Gioncu, V. (2012). Prediction of available rotation capacity and ductility of wide-flange beams: Part 2: Applications. Journal of Constructional Steel Research, 68, 176–191.CrossRef Anastasiadis, A., Mosoarca, M., & Gioncu, V. (2012). Prediction of available rotation capacity and ductility of wide-flange beams: Part 2: Applications. Journal of Constructional Steel Research, 68, 176–191.CrossRef
Zurück zum Zitat Badawi, M. W., Mohsin, M. E., & Thornley, R. H. (1963). The static analysis of warren beams under torsional and bending loads. International Journal of Machine Tool Design and Research, 3, 177–191.CrossRef Badawi, M. W., Mohsin, M. E., & Thornley, R. H. (1963). The static analysis of warren beams under torsional and bending loads. International Journal of Machine Tool Design and Research, 3, 177–191.CrossRef
Zurück zum Zitat Baker, J. & Heyman, J. Plastic Design of Frames 1. Fundamental. (1969). Baker, J. & Heyman, J. Plastic Design of Frames 1. Fundamental. (1969).
Zurück zum Zitat Bild, S., Roik, K., Sedlacek, G., Stutzki, C., & Spangemacher, R. Background document for chapter 5 of Eurocode 3—the b/t-ratios controlling the applicability of analysis models in Eurocode 3. Aachen: Draft. (1989). Bild, S., Roik, K., Sedlacek, G., Stutzki, C., & Spangemacher, R. Background document for chapter 5 of Eurocode 3—the b/t-ratios controlling the applicability of analysis models in Eurocode 3. Aachen: Draft. (1989).
Zurück zum Zitat BS 5950-1:1990. Structural use of steelwork in building. Part 1. Code of practice for design in simple and continuous construction: hot rolled sections. (1990). BS 5950-1:1990. Structural use of steelwork in building. Part 1. Code of practice for design in simple and continuous construction: hot rolled sections. (1990).
Zurück zum Zitat Cevik, A. (2007). Genetic programming based formulation of rotation capacity of wide flange beams. Journal of Constructional Steel Research, 63, 884–893.CrossRef Cevik, A. (2007). Genetic programming based formulation of rotation capacity of wide flange beams. Journal of Constructional Steel Research, 63, 884–893.CrossRef
Zurück zum Zitat CSA S16-09. Design of Steel Structures. (2009). CSA S16-09. Design of Steel Structures. (2009).
Zurück zum Zitat D’Aniello, M., Guneyisi, E. M., Landolfo, R., & Mermerdaş, K. (2014). Analytical prediction of available rotation capacity of cold-formed rectangular and square hollow section beams. Thin-Walled Structure, 77, 141–152.CrossRef D’Aniello, M., Guneyisi, E. M., Landolfo, R., & Mermerdaş, K. (2014). Analytical prediction of available rotation capacity of cold-formed rectangular and square hollow section beams. Thin-Walled Structure, 77, 141–152.CrossRef
Zurück zum Zitat dei Lavori Pubblici, C. S. Norme tecniche per le costruzioni. Gazz. Uff. 495 (2008). dei Lavori Pubblici, C. S. Norme tecniche per le costruzioni. Gazz. Uff. 495 (2008).
Zurück zum Zitat DIN 18800-1. Steel structures - Part 1: Design and construction. (1990). DIN 18800-1. Steel structures - Part 1: Design and construction. (1990).
Zurück zum Zitat El-Kassas, E. M. A., Mackie, R. I., & El-Sheikh, A. I. (2001). Using neural networks in cold-formed steel design. Computers & Structures, 79, 1687–1696.CrossRef El-Kassas, E. M. A., Mackie, R. I., & El-Sheikh, A. I. (2001). Using neural networks in cold-formed steel design. Computers & Structures, 79, 1687–1696.CrossRef
Zurück zum Zitat EN 1993-1-1. Eurocode 3: Design of steel structures - Part 1–1: General rules and rules for buildings. Eur. Comm. Stand. 1, (2005). EN 1993-1-1. Eurocode 3: Design of steel structures - Part 1–1: General rules and rules for buildings. Eur. Comm. Stand. 1, (2005).
Zurück zum Zitat Fang, C., Ping, Y., Gao, Y., Zheng, Y., & Chen, Y. (2022a). Machine learning-aided multi-objective optimization of structures with hybrid braces – Framework and case study. Engineering Structures, 269, 1–24.CrossRef Fang, C., Ping, Y., Gao, Y., Zheng, Y., & Chen, Y. (2022a). Machine learning-aided multi-objective optimization of structures with hybrid braces – Framework and case study. Engineering Structures, 269, 1–24.CrossRef
Zurück zum Zitat Fang, Z., et al. (2021a). Deep learning-based procedure for structural design of cold-formed steel channel sections with edge-stiffened and un-stiffened holes under axial compression. Thin-Walled Structure, 166, 108076.CrossRef Fang, Z., et al. (2021a). Deep learning-based procedure for structural design of cold-formed steel channel sections with edge-stiffened and un-stiffened holes under axial compression. Thin-Walled Structure, 166, 108076.CrossRef
Zurück zum Zitat Fang, Z., et al. (2021b). Deep learning-based axial capacity prediction for cold-formed steel channel sections using Deep Belief Network. Structures, 33, 2792–2802.CrossRef Fang, Z., et al. (2021b). Deep learning-based axial capacity prediction for cold-formed steel channel sections using Deep Belief Network. Structures, 33, 2792–2802.CrossRef
Zurück zum Zitat Fang, Z., Roy, K., Dai, Y., & Lim, J. B. P. (2022b). Effect of web perforations on end-two-flange web crippling behaviour of roll-formed aluminium alloy unlipped channels through experimental test, numerical simulation and deep learning. Thin-Walled Structure, 179, 109489.CrossRef Fang, Z., Roy, K., Dai, Y., & Lim, J. B. P. (2022b). Effect of web perforations on end-two-flange web crippling behaviour of roll-formed aluminium alloy unlipped channels through experimental test, numerical simulation and deep learning. Thin-Walled Structure, 179, 109489.CrossRef
Zurück zum Zitat Fang, Z., Roy, K., Ma, Q., Uzzaman, A., & Lim, J. B. P. (2021c). Application of deep learning method in web crippling strength prediction of cold-formed stainless steel channel sections under end-two-flange loading. Structures, 33, 2903–2942.CrossRef Fang, Z., Roy, K., Ma, Q., Uzzaman, A., & Lim, J. B. P. (2021c). Application of deep learning method in web crippling strength prediction of cold-formed stainless steel channel sections under end-two-flange loading. Structures, 33, 2903–2942.CrossRef
Zurück zum Zitat Gholizadeh, S., Pirmoz, A., & Attarnejad, R. (2011). Assessment of load carrying capacity of castellated steel beams by neural networks. Journal of Constructional Steel Research, 67, 770–779.CrossRef Gholizadeh, S., Pirmoz, A., & Attarnejad, R. (2011). Assessment of load carrying capacity of castellated steel beams by neural networks. Journal of Constructional Steel Research, 67, 770–779.CrossRef
Zurück zum Zitat Gioncu, V., Mosoarca, M., & Anastasiadis, A. (2012). Prediction of available rotation capacity and ductility of wide-flange beams: Part 1: DUCTROT-M computer program. Journal of Constructional Steel Research, 69, 8–19.CrossRef Gioncu, V., Mosoarca, M., & Anastasiadis, A. (2012). Prediction of available rotation capacity and ductility of wide-flange beams: Part 1: DUCTROT-M computer program. Journal of Constructional Steel Research, 69, 8–19.CrossRef
Zurück zum Zitat Gulgec, N. S., Takáč, M., & Pakzad, S. N. (2019). Convolutional neural network approach for robust structural damage detection and localization. Journal of Computing in Civil Engineering, 33, 04019005.CrossRef Gulgec, N. S., Takáč, M., & Pakzad, S. N. (2019). Convolutional neural network approach for robust structural damage detection and localization. Journal of Computing in Civil Engineering, 33, 04019005.CrossRef
Zurück zum Zitat Guneyisi, E. M., D’Aniello, M., Landolfo, R., & Mermerdaş, K. (2014). Prediction of the flexural overstrength factor for steel beams using artificial neural network. Steel & Composite Structures, 17, 215–236.CrossRef Guneyisi, E. M., D’Aniello, M., Landolfo, R., & Mermerdaş, K. (2014). Prediction of the flexural overstrength factor for steel beams using artificial neural network. Steel & Composite Structures, 17, 215–236.CrossRef
Zurück zum Zitat Guzelbey, I. H., Cevik, A., & Gögüş, M. T. (2006). Prediction of rotation capacity of wide flange beams using neural networks. Journal of Constructional Steel Research, 62, 950–961.CrossRef Guzelbey, I. H., Cevik, A., & Gögüş, M. T. (2006). Prediction of rotation capacity of wide flange beams using neural networks. Journal of Constructional Steel Research, 62, 950–961.CrossRef
Zurück zum Zitat Hait, P., Sil, A., & Choudhury, S. (2020). Seismic damage assessment and prediction using artificial neural network of RC building considering irregularities. Journal of Structural Integrity and Maintenance, 5, 51–69.CrossRef Hait, P., Sil, A., & Choudhury, S. (2020). Seismic damage assessment and prediction using artificial neural network of RC building considering irregularities. Journal of Structural Integrity and Maintenance, 5, 51–69.CrossRef
Zurück zum Zitat Hassan, E. M., Serror, M. H., & Mourad, S. A. (2017). Numerical prediction of available rotation capacity of cold-formed steel beams. Journal of Constructional Steel Research, 128, 84–98.CrossRef Hassan, E. M., Serror, M. H., & Mourad, S. A. (2017). Numerical prediction of available rotation capacity of cold-formed steel beams. Journal of Constructional Steel Research, 128, 84–98.CrossRef
Zurück zum Zitat IS:800-2007. Indian standard code of practice for general construction in steel. Bureau of Indian Standards, New Delhi (2007). IS:800-2007. Indian standard code of practice for general construction in steel. Bureau of Indian Standards, New Delhi (2007).
Zurück zum Zitat IS 1608 (2005): Mechanical testing of metals - Tensile Testing [MTD 3: Mechanical Testing of Metals]. (2005). IS 1608 (2005): Mechanical testing of metals - Tensile Testing [MTD 3: Mechanical Testing of Metals]. (2005).
Zurück zum Zitat Kaczmarek, M., & Szymańska, A. (2016). Application of artificial neural networks to predict the deflections of reinforced concrete beams. Studis Geotechnica Mechanica, 38, 37–46.CrossRef Kaczmarek, M., & Szymańska, A. (2016). Application of artificial neural networks to predict the deflections of reinforced concrete beams. Studis Geotechnica Mechanica, 38, 37–46.CrossRef
Zurück zum Zitat Kemp, A. R. (1985). I Interaction of plastic local and lateral buckling. Journal of the Structural Engineering. American Society of Civil Engineers, 111, 2181–2196. Kemp, A. R. (1985). I Interaction of plastic local and lateral buckling. Journal of the Structural Engineering. American Society of Civil Engineers, 111, 2181–2196.
Zurück zum Zitat Mansour, M. Y., Dicleli, M., Lee, J. Y., & Zhang, J. (2004). Predicting the shear strength of reinforced concrete beams using artificial neural networks. Engineering Structures, 26, 781–799.CrossRef Mansour, M. Y., Dicleli, M., Lee, J. Y., & Zhang, J. (2004). Predicting the shear strength of reinforced concrete beams using artificial neural networks. Engineering Structures, 26, 781–799.CrossRef
Zurück zum Zitat Matteis, G. D., Moen, L. A., Langseth, M., Landolfo, R., Hopperstad, O. S., & Mazzolani, F. M. (2001). Cross-sectional classification for aluminum beams—parametric study. Journal of the Structural Engineering. American Society of Civil Engineers, 127, 271–279. Matteis, G. D., Moen, L. A., Langseth, M., Landolfo, R., Hopperstad, O. S., & Mazzolani, F. M. (2001). Cross-sectional classification for aluminum beams—parametric study. Journal of the Structural Engineering. American Society of Civil Engineers, 127, 271–279.
Zurück zum Zitat Megson, T. H. G. (2019). Structural and stress analysis. Butterworth-Heinemann. Megson, T. H. G. (2019). Structural and stress analysis. Butterworth-Heinemann.
Zurück zum Zitat Pala, M., & Caglar, N. (2007). A parametric study for distortional buckling stress on cold-formed steel using a neural network. Journal of Constructional Steel Research, 63, 686–691.CrossRef Pala, M., & Caglar, N. (2007). A parametric study for distortional buckling stress on cold-formed steel using a neural network. Journal of Constructional Steel Research, 63, 686–691.CrossRef
Zurück zum Zitat Petcu, D., & Gioncu, V. (2003). Computer program for available ductility analysis of steel structures. Computers & Structures, 81, 2149–2164.CrossRef Petcu, D., & Gioncu, V. (2003). Computer program for available ductility analysis of steel structures. Computers & Structures, 81, 2149–2164.CrossRef
Zurück zum Zitat Rafiq, M. Y., Bugmann, G., & Easterbrook, D. J. (2001). Neural network design for engineering applications. Computers & Structures, 79, 1541–1552.CrossRef Rafiq, M. Y., Bugmann, G., & Easterbrook, D. J. (2001). Neural network design for engineering applications. Computers & Structures, 79, 1541–1552.CrossRef
Zurück zum Zitat Rhim, J., & Lee, S. W. (1995). A neural network approach for damage detection and identification of structures. Computational Mechanics, 16, 437–443.CrossRefMATH Rhim, J., & Lee, S. W. (1995). A neural network approach for damage detection and identification of structures. Computational Mechanics, 16, 437–443.CrossRefMATH
Zurück zum Zitat Saliba, N., & Gardner, L. (2013). Experimental study of the shear response of lean duplex stainless steel plate girders. Engineering Structures, 46, 375–391.CrossRef Saliba, N., & Gardner, L. (2013). Experimental study of the shear response of lean duplex stainless steel plate girders. Engineering Structures, 46, 375–391.CrossRef
Zurück zum Zitat Sedlacek, G., & Feldmann, M. The b/t-ratios controlling the applicability of analysis models in Eurocode 3, Part 1.1. Background Document, 5. (1995). Sedlacek, G., & Feldmann, M. The b/t-ratios controlling the applicability of analysis models in Eurocode 3, Part 1.1. Background Document, 5. (1995).
Zurück zum Zitat Simulia. ABAQUS/CAE User’s Manual (Version 6.14). Dassault Systemes; (2014). Simulia. ABAQUS/CAE User’s Manual (Version 6.14). Dassault Systemes; (2014).
Zurück zum Zitat Standard, B. Eurocode 8: Design of structures for earthquake resistance. Part-1. (2005). Standard, B. Eurocode 8: Design of structures for earthquake resistance. Part-1. (2005).
Zurück zum Zitat Stranghoner, N., Sedlacek, G., & Boeraeve, P. Rotation requirement and rotation capacity of rectangular, square and circular hollow section beams. Tubul. Struct. VI. Routledge. 143–150 (2021). Stranghoner, N., Sedlacek, G., & Boeraeve, P. Rotation requirement and rotation capacity of rectangular, square and circular hollow section beams. Tubul. Struct. VI. Routledge. 143–150 (2021).
Zurück zum Zitat Timoshenko, S. P., & Gere, J. M. (1961). Theory of elastic stability. McGraw-Hill. Timoshenko, S. P., & Gere, J. M. (1961). Theory of elastic stability. McGraw-Hill.
Zurück zum Zitat Topcu, I. B., & Saridemir, M. (2008). Prediction of rubberized concrete properties using artificial neural network and fuzzy logic. Construction and Building Materials, 22, 532–540.CrossRef Topcu, I. B., & Saridemir, M. (2008). Prediction of rubberized concrete properties using artificial neural network and fuzzy logic. Construction and Building Materials, 22, 532–540.CrossRef
Zurück zum Zitat Wilkinson, T., & Hancock, G. (2002). Predicting the rotation capacity of cold-formed RHS beams using finite element analysis. Journal of Constructional Steel Research, 58, 1455–1471.CrossRef Wilkinson, T., & Hancock, G. (2002). Predicting the rotation capacity of cold-formed RHS beams using finite element analysis. Journal of Constructional Steel Research, 58, 1455–1471.CrossRef
Zurück zum Zitat Yang, X., Gao, Y., Fang, C., Zheng, Y., & Wang, W. (2022). Deep learning-based bolt loosening detection for wind turbine towers. Structural Control Health Monitoring, 29, e2943.CrossRef Yang, X., Gao, Y., Fang, C., Zheng, Y., & Wang, W. (2022). Deep learning-based bolt loosening detection for wind turbine towers. Structural Control Health Monitoring, 29, e2943.CrossRef
Zurück zum Zitat Yura, J. A., Galambos, T. V., & Ravindra, M. K. (1978). The bending resistance of steel beams. Journal of the Structural Division, 104, 1355–1370.CrossRef Yura, J. A., Galambos, T. V., & Ravindra, M. K. (1978). The bending resistance of steel beams. Journal of the Structural Division, 104, 1355–1370.CrossRef
Zurück zum Zitat Zekić-Sušac, M., Šarlija, N., & Benšić, M. (2005). Selecting neural network architecture for investment profitability predictions. Journal of Information Organizational Sciences, 651, 83–95. Zekić-Sušac, M., Šarlija, N., & Benšić, M. (2005). Selecting neural network architecture for investment profitability predictions. Journal of Information Organizational Sciences, 651, 83–95.
Metadaten
Titel
Rotation Capacity Prediction of Open Web Steel Beams Using Artificial Neural Networks
verfasst von
Ganesh S. Gawande
Laxmikant M. Gupta
Publikationsdatum
23.05.2023
Verlag
Korean Society of Steel Construction
Erschienen in
International Journal of Steel Structures / Ausgabe 4/2023
Print ISSN: 1598-2351
Elektronische ISSN: 2093-6311
DOI
https://doi.org/10.1007/s13296-023-00750-2

Weitere Artikel der Ausgabe 4/2023

International Journal of Steel Structures 4/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.