Skip to main content
Erschienen in: Health and Technology 4/2019

16.11.2018 | Original Paper

Rule based classification of neurodegenerative diseases using data driven gait features

verfasst von: Kartikay Gupta, Aayushi Khajuria, Niladri Chatterjee, Pradeep Joshi, Deepak Joshi

Erschienen in: Health and Technology | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Classification of neurodegenerative diseases (NDD) like Parkinson’s disease (PD), Amyotrophic Lateral Sclerosis (ALS), and Huntington’s disease (HD) is of high clinical importance. The gait analysis based classification is attractive due to its simplicity and noninvasiveness. In this paper, we propose a data driven features approach along with autocorrelation and cross correlation between gait time series to create different feature set for a sample representation. Further, a rule based classifier using Decision Tree is trained with those features to classify the neurodegenerative diseases from healthy controls. Mutual Information (MI) analysis revealed the dominance of data driven features over auto and cross correlation based features. The classifier fed with top 500 features could produce the classification accuracy of 88.5%, 92.3%, and 96.2% for HD vs. control, PD vs. Control, and ALS vs. control. Pooling all neurodegenerative samples into one as NDD class and applying current approach produced nearly 87.5% of accuracy for NDD vs. control. Finally, we validated the present approach for a challenging situation of classification of less severe patients and observed respectable accuracies of 80%, 80%, 90%, and 73.33% for HD vs. control, PD vs. Control, and ALS vs. control, and NDD vs. control, respectively. The proposed algorithm shows potential for rule based classification system in data driven features for Neurodegenerative disease classification.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Gourie Devi M. Epidemiology of neurological disorders in India: review of background, prevalence and incidence of epilepsy, stroke, Parkinson's disease and tremors. Neurol India. 2014;62(6):588–98.CrossRef Gourie Devi M. Epidemiology of neurological disorders in India: review of background, prevalence and incidence of epilepsy, stroke, Parkinson's disease and tremors. Neurol India. 2014;62(6):588–98.CrossRef
3.
Zurück zum Zitat Wu Y, Krishnan S. Computer-aided analysis of gait rhythm fluctuations in amyotrophic lateral sclerosis. Med Biol Eng Comput. 2009;47:1165–71.CrossRef Wu Y, Krishnan S. Computer-aided analysis of gait rhythm fluctuations in amyotrophic lateral sclerosis. Med Biol Eng Comput. 2009;47:1165–71.CrossRef
4.
Zurück zum Zitat Hausdroff JM, Cudkowicz ME, Firtion R, Wei JY, Goldberger AL. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov Disord. 1998;13(3):428–37.CrossRef Hausdroff JM, Cudkowicz ME, Firtion R, Wei JY, Goldberger AL. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov Disord. 1998;13(3):428–37.CrossRef
6.
Zurück zum Zitat Pyo SJ, Kim H, Kim S, Park Y-M, Kim M-J, et al. Quantitative gait analysis in patients with Huntington’s disease. J Move Disorders. 2017;10(3):140–4.CrossRef Pyo SJ, Kim H, Kim S, Park Y-M, Kim M-J, et al. Quantitative gait analysis in patients with Huntington’s disease. J Move Disorders. 2017;10(3):140–4.CrossRef
7.
Zurück zum Zitat Gupta A, Nguyen TB, Chakraborty S, Bourque PR. Accuracy of conventional MRI in ALS. Can J Neurol Sci. 2014;41:53–7.CrossRef Gupta A, Nguyen TB, Chakraborty S, Bourque PR. Accuracy of conventional MRI in ALS. Can J Neurol Sci. 2014;41:53–7.CrossRef
10.
Zurück zum Zitat Hausdorff JM. ZviLadin, Jeanne Y.Wei. Footswitch system for measurement of the temporal parameters of gait. J Biomech. 1995;28(3):347–51.CrossRef Hausdorff JM. ZviLadin, Jeanne Y.Wei. Footswitch system for measurement of the temporal parameters of gait. J Biomech. 1995;28(3):347–51.CrossRef
11.
Zurück zum Zitat Barker S, Craik R, Freedman W, Herrmann N, Hillstrom H. Accuracy, reliability, and validity of a spatiotemporal gait analysis system. Med Eng Phys. 2006;28:460–7.CrossRef Barker S, Craik R, Freedman W, Herrmann N, Hillstrom H. Accuracy, reliability, and validity of a spatiotemporal gait analysis system. Med Eng Phys. 2006;28:460–7.CrossRef
12.
Zurück zum Zitat Monrraga Bernardino F, Sánchez-DelaCruz E, Ruíz M. Knee-Ankle Sensor for Gait Characterization: Gender Identification Case. Intelligent Computing Systems, Communications in Computer and Information Science, Springer, 2018, 820. Monrraga Bernardino F, Sánchez-DelaCruz E, Ruíz M. Knee-Ankle Sensor for Gait Characterization: Gender Identification Case. Intelligent Computing Systems, Communications in Computer and Information Science, Springer, 2018, 820.
13.
Zurück zum Zitat Wua Y, Shib L. Analysis of altered gait cycle duration in amyotrophic lateral sclerosis based on nonparametric probability density function estimation. Med Eng Phys. 2011;33:347–55.CrossRef Wua Y, Shib L. Analysis of altered gait cycle duration in amyotrophic lateral sclerosis based on nonparametric probability density function estimation. Med Eng Phys. 2011;33:347–55.CrossRef
14.
Zurück zum Zitat Zeng W, Wang C. Classification of neurodegenerative diseases using gait dynamics via deterministic learning. Inf Sci. 2015;317:246–58.CrossRef Zeng W, Wang C. Classification of neurodegenerative diseases using gait dynamics via deterministic learning. Inf Sci. 2015;317:246–58.CrossRef
15.
Zurück zum Zitat Daliri MR. Automatic diagnosis of neurodegenerative diseases using gait dynamics. Measurement. 2012;45:1729–34.CrossRef Daliri MR. Automatic diagnosis of neurodegenerative diseases using gait dynamics. Measurement. 2012;45:1729–34.CrossRef
16.
Zurück zum Zitat Wu Y, Krishnan S. Statistical analysis of gait rhythm in patients with Parkinson’s disease. IEEE Trans Neu Syst Rehab Eng. 2010;18(2):150–8.CrossRef Wu Y, Krishnan S. Statistical analysis of gait rhythm in patients with Parkinson’s disease. IEEE Trans Neu Syst Rehab Eng. 2010;18(2):150–8.CrossRef
17.
Zurück zum Zitat W. Van Drongelen. Signal Processing for Neuroscientists: An Introduction to the Analysis of Physiological Signals, Academic Press, 2006. W. Van Drongelen. Signal Processing for Neuroscientists: An Introduction to the Analysis of Physiological Signals, Academic Press, 2006.
18.
Zurück zum Zitat Joshi D, Khajuria A, Joshi P. An automatic non-invasive method for Parkinson’s disease classification. Comput Methods Prog Biomed, Elsevier. 2017;145:135–45. Joshi D, Khajuria A, Joshi P. An automatic non-invasive method for Parkinson’s disease classification. Comput Methods Prog Biomed, Elsevier. 2017;145:135–45.
19.
Zurück zum Zitat Baratin E, Sugavaneswaran L, Umapathy K, Ioana C, Krishnan S. Wavelet-based characterization of gait signal for neurological abnormalities. Gait Posture, Elsevier. 2015;41:634–9.CrossRef Baratin E, Sugavaneswaran L, Umapathy K, Ioana C, Krishnan S. Wavelet-based characterization of gait signal for neurological abnormalities. Gait Posture, Elsevier. 2015;41:634–9.CrossRef
20.
Zurück zum Zitat Yang M, Zheng H, Wang H, Mclean S. Feature Selection and Construction for the Discrimination of Neurodegenerative Diseases Based on Gait Analysis. Pervasive Computing Technologies for Healthcare, 3rd International Conference IEEE, London, 2009. Yang M, Zheng H, Wang H, Mclean S. Feature Selection and Construction for the Discrimination of Neurodegenerative Diseases Based on Gait Analysis. Pervasive Computing Technologies for Healthcare, 3rd International Conference IEEE, London, 2009.
21.
Zurück zum Zitat Ren P, Tang S, Fang F, Luo L, Xu L, Bringas-Vega ML, et al. Gait rhythm fluctuation analysis for neurodegenerative diseases by empirical mode decomposition. IEEE Trans Biomed Eng. 2017;64(1):52–60. Ren P, Tang S, Fang F, Luo L, Xu L, Bringas-Vega ML, et al. Gait rhythm fluctuation analysis for neurodegenerative diseases by empirical mode decomposition. IEEE Trans Biomed Eng. 2017;64(1):52–60.
22.
Zurück zum Zitat Ren P, Zhao W, Zhao Z, Bringas ML, Valdes-Sosa PA, Kendrick KM. Analysis of gait rhythm fluctuations for neurodegenerative diseases by phase synchronization and conditional entropy. IEEE Trans Neural Syst Rehab Eng. 2016;24(2):291–9.CrossRef Ren P, Zhao W, Zhao Z, Bringas ML, Valdes-Sosa PA, Kendrick KM. Analysis of gait rhythm fluctuations for neurodegenerative diseases by phase synchronization and conditional entropy. IEEE Trans Neural Syst Rehab Eng. 2016;24(2):291–9.CrossRef
23.
Zurück zum Zitat Lipton ZC. The Mythos of Model Interpretability. ArXiv e-prints, 2016. Lipton ZC. The Mythos of Model Interpretability. ArXiv e-prints, 2016.
24.
Zurück zum Zitat Tanner L, Schreiber M, Jenny GH. Low et al. decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness. PLoS Negl Trop Dis. 2008;2(3):10.1371/journal.pntd.0000196.CrossRef Tanner L, Schreiber M, Jenny GH. Low et al. decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness. PLoS Negl Trop Dis. 2008;2(3):10.1371/journal.pntd.0000196.CrossRef
25.
Zurück zum Zitat Nukala BT, Nakano T, Rodriguez A, et al. Real-time classification of patients with balance disorders vs. Normal subjects using a low-cost small wireless wearable gait sensor. Biosensors. 2016, 6(4):58–80. https://doi.org/10.3390/bios6040058. Nukala BT, Nakano T, Rodriguez A, et al. Real-time classification of patients with balance disorders vs. Normal subjects using a low-cost small wireless wearable gait sensor. Biosensors. 2016, 6(4):58–80. https://​doi.​org/​10.​3390/​bios6040058.
26.
Zurück zum Zitat Tu Y-Q, Shen Y-L. Phase correction autocorrelation-based frequency estimation method for sinusoidal signal. Sign Proc, Elsevier. 2017;130:183–9.CrossRef Tu Y-Q, Shen Y-L. Phase correction autocorrelation-based frequency estimation method for sinusoidal signal. Sign Proc, Elsevier. 2017;130:183–9.CrossRef
27.
Zurück zum Zitat Zoubek L, Charbonnier S, Lesecq S, Buguet A, Chapotot F. Feature selection for sleep/wake stages classification using data driven methods. Biomed Sign Proc Control, Elsevier. 2007;2(3):171–9.CrossRef Zoubek L, Charbonnier S, Lesecq S, Buguet A, Chapotot F. Feature selection for sleep/wake stages classification using data driven methods. Biomed Sign Proc Control, Elsevier. 2007;2(3):171–9.CrossRef
29.
Zurück zum Zitat Hausdorff JM, Lertratanakul A, Cudkowicz ME, et al. Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J Appl Physiol. 2000;88:2045–53.CrossRef Hausdorff JM, Lertratanakul A, Cudkowicz ME, et al. Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J Appl Physiol. 2000;88:2045–53.CrossRef
30.
Zurück zum Zitat Kwak SK, Kim JH. Statistical data preparation: management of missing values and outliers. Korean J Anesthesiol. 2017;70(4):407–11.CrossRef Kwak SK, Kim JH. Statistical data preparation: management of missing values and outliers. Korean J Anesthesiol. 2017;70(4):407–11.CrossRef
31.
Zurück zum Zitat Leys C, Ley C, Klein O, et al. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J Exp Soc Psychol/ Elsevier. 2013;19(4):764–6.CrossRef Leys C, Ley C, Klein O, et al. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J Exp Soc Psychol/ Elsevier. 2013;19(4):764–6.CrossRef
32.
34.
Zurück zum Zitat Xia Y, Gao Q, Ye Q. Classification of gait rhythm signals between patients with neurodegenerative diseases and normal subjects: experiments with statistical features and different classification models. Biomed Sign Proc Control, Elsevier. 2015;18:254–62.CrossRef Xia Y, Gao Q, Ye Q. Classification of gait rhythm signals between patients with neurodegenerative diseases and normal subjects: experiments with statistical features and different classification models. Biomed Sign Proc Control, Elsevier. 2015;18:254–62.CrossRef
35.
Zurück zum Zitat De Laet T, Papageorgiou E, Nieuwenhuys A, Desloovere K. Does expert knowledge improve automatic probabilistic classification of gait joint motion patterns in children with cerebral palsy? PLoS One. 2017;12(6):10.1371/journal.pone.0178378. De Laet T, Papageorgiou E, Nieuwenhuys A, Desloovere K. Does expert knowledge improve automatic probabilistic classification of gait joint motion patterns in children with cerebral palsy? PLoS One. 2017;12(6):10.1371/journal.pone.0178378.
36.
Zurück zum Zitat Shirakawa T, Sugiyama N, Sato H, Sakurai K, Sato E. Gait analysis and machine learning classification on healthy subjects in normal walking. Int J Parallel, Emerg Distrib Syst, Taylor and Francis. 2015;32(2):185–94.CrossRef Shirakawa T, Sugiyama N, Sato H, Sakurai K, Sato E. Gait analysis and machine learning classification on healthy subjects in normal walking. Int J Parallel, Emerg Distrib Syst, Taylor and Francis. 2015;32(2):185–94.CrossRef
Metadaten
Titel
Rule based classification of neurodegenerative diseases using data driven gait features
verfasst von
Kartikay Gupta
Aayushi Khajuria
Niladri Chatterjee
Pradeep Joshi
Deepak Joshi
Publikationsdatum
16.11.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Health and Technology / Ausgabe 4/2019
Print ISSN: 2190-7188
Elektronische ISSN: 2190-7196
DOI
https://doi.org/10.1007/s12553-018-0274-y

Weitere Artikel der Ausgabe 4/2019

Health and Technology 4/2019 Zur Ausgabe

Premium Partner