Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2008

01.04.2008

Saccade-related remapping of target representations between topographic maps: a neural network study

verfasst von: Gerald P. Keith, J. Douglas Crawford

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2008

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The goal of this study was to explore how a neural network could solve the updating task associated with the double-saccade paradigm, where two targets are flashed in succession and the subject must make saccades to the remembered locations of both targets. Because of the eye rotation of the saccade to the first target, the remembered retinal position of the second target must be updated if an accurate saccade to that target is to be made. We trained a three-layer, feed-forward neural network to solve this updating task using back-propagation. The network’s inputs were the initial retinal position of the second target represented by a hill of activation in a 2D topographic array of units, as well as the initial eye orientation and the motor error of the saccade to the first target, each represented as 3D vectors in brainstem coordinates. The output of the network was the updated retinal position of the second target, also represented in a 2D topographic array of units. The network was trained to perform this updating using the full 3D geometry of eye rotations, and was able to produce the updated second-target position to within a 1° RMS accuracy for a set of test points that included saccades of up to 70°. Emergent properties in the network's hidden layer included sigmoidal receptive fields whose orientations formed distinct clusters, and predictive remapping similar to that seen in brain areas associated with saccade generation. Networks with the larger numbers of hidden-layer units developed two distinct types of units with different transformation properties: units that preferentially performed the linear remapping of vector subtraction, and units that performed the nonlinear elements of remapping that arise from initial eye orientation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
While networks with 9 and 25 HLUs showed consistent clustering into two groups with orthogonal receptive field boundaries, networks with 100 HLUs show consistent clustering into three groups oriented at 60° intervals, networks with 49 HLUs showed either two or three groups. The principle of the mechanism for generating a hill of activation using three clusters is the same as using two: the output hill is generated at the location where the ridge of excitatory contributions generated by each cluster intersect.
 
2
This vector-subtraction, linear remapping is not exactly the same as the canonical vector-subtraction model. In the latter it is the retinal position of the saccade target rather than the motor error of the saccade that is being subtracted. It is similar, however, since the two are closely related.
 
3
In our paradigm, the torsional angles for initial eye orientation and saccade motor error for all training and test points were always equal in magnitude and opposite in sign. The torsional sensitivity vectors of these two input quantities were in a ratio of −1:2 with a Pearson r magnitude of >0.99 for all HLUs and in all network trials. This 1:2 ratio arose out of the encoding ratio of saccade motor error to initial eye orientation, where the range of motor error was twice that of eye orientation for the full range of input unit activations. We confirmed that this was the cause by varying the encoding ratio to 1:3, 1:4, and 2:3 in several trials. The torsional sensitivity vectors emerged with consistent ratios of -0.35 ± 0.04, -0.25 ± 0.02, and -0.66 ± 0.03.
 
4
There is no reason to believe that the three-fold clustering at 60° intervals to be a limit in the angular regularities observed in motor error sensitivity vectors. Whether higher-level clustering, say four-fold clustering at with clusters at 45° intervals, might occur in networks with more than 100 HLUs, this depends on whether the benefit of such clustering would be significant compared to fully-unclustered HLUs. As the angular spread within each cluster approaches the inter-cluster angular interval, then both utility and definition of clustering disappears and clustering would not appear.
 
Literatur
Zurück zum Zitat Andersen, R. A., Bracewell, R. M., Barash, S., Gnadt, J. W., & Fogassi, L. (1990). Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque. Journal of Neuroscience, 10, 1176–1196.PubMed Andersen, R. A., Bracewell, R. M., Barash, S., Gnadt, J. W., & Fogassi, L. (1990). Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque. Journal of Neuroscience, 10, 1176–1196.PubMed
Zurück zum Zitat Andersen, R. A., Essick, G. K., & Siegel, R. M. (1985). Encoding of spatial location by posterior parietal neurons. Science, 230, 456–458.PubMedCrossRef Andersen, R. A., Essick, G. K., & Siegel, R. M. (1985). Encoding of spatial location by posterior parietal neurons. Science, 230, 456–458.PubMedCrossRef
Zurück zum Zitat Batista, A. P., Buneo, C. A., Snyder, L. H., & Andersen, R. A. (1999). Reach plans in eye-centered coordinates. Science, 285, 257–260.PubMedCrossRef Batista, A. P., Buneo, C. A., Snyder, L. H., & Andersen, R. A. (1999). Reach plans in eye-centered coordinates. Science, 285, 257–260.PubMedCrossRef
Zurück zum Zitat Batschelet, E. (1981). Circular statistics in biology. London, UK: Academic. Batschelet, E. (1981). Circular statistics in biology. London, UK: Academic.
Zurück zum Zitat Ben Hamed, S., Duhamel, J. R., Bremmer, F., & Graf, W. (2001). Representations of the visual field in the laterial intraparietal area of macaque monkeys: A quantitative receptive field analysis. Experimental Brain Research, 140, 127–144.CrossRef Ben Hamed, S., Duhamel, J. R., Bremmer, F., & Graf, W. (2001). Representations of the visual field in the laterial intraparietal area of macaque monkeys: A quantitative receptive field analysis. Experimental Brain Research, 140, 127–144.CrossRef
Zurück zum Zitat Cassanello, C. R., & Ferrera, V. P. (2007). Computing vector differences using a gain field-like mechanism in monkey frontal eye field. Journal of Physiology [epub ahead of print]. Cassanello, C. R., & Ferrera, V. P. (2007). Computing vector differences using a gain field-like mechanism in monkey frontal eye field. Journal of Physiology [epub ahead of print].
Zurück zum Zitat Colby, C. L., Duhamel, J. R., & Goldberg, M. E. (1995). Oculocentric spatial representation in parietal cortex. Cerebral Cortex, 5, 470–481.PubMedCrossRef Colby, C. L., Duhamel, J. R., & Goldberg, M. E. (1995). Oculocentric spatial representation in parietal cortex. Cerebral Cortex, 5, 470–481.PubMedCrossRef
Zurück zum Zitat Colby, C. L., & Goldberg, M. E. (1999). Space and attention in parietal cortex. Annual Review of Neuroscience, 22, 319–349.PubMedCrossRef Colby, C. L., & Goldberg, M. E. (1999). Space and attention in parietal cortex. Annual Review of Neuroscience, 22, 319–349.PubMedCrossRef
Zurück zum Zitat Crawford, J. D. (1994). The oculomotor neural integrator uses a behavior-related coordinate system. Journal of Neuroscience, 14, 6911–6923.PubMed Crawford, J. D. (1994). The oculomotor neural integrator uses a behavior-related coordinate system. Journal of Neuroscience, 14, 6911–6923.PubMed
Zurück zum Zitat Crawford, J. D., & Vilis, T. (1992). Symmetry of oculomotor burst neuron coordinates about Listing’s plane. Journal of Neurophysiology, 68, 432–448.PubMed Crawford, J. D., & Vilis, T. (1992). Symmetry of oculomotor burst neuron coordinates about Listing’s plane. Journal of Neurophysiology, 68, 432–448.PubMed
Zurück zum Zitat Cynader, M., & Berman, N. (1972). Receptive-field organization of monkey superior colliculus. Journal of Neurophysiology, 35, 187–201.PubMed Cynader, M., & Berman, N. (1972). Receptive-field organization of monkey superior colliculus. Journal of Neurophysiology, 35, 187–201.PubMed
Zurück zum Zitat Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255, 90–92.PubMedCrossRef Duhamel, J. R., Colby, C. L., & Goldberg, M. E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255, 90–92.PubMedCrossRef
Zurück zum Zitat Goldberg, M. E., & Bruce, C. J. (1990). Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. Journal of Neurophysiology, 64, 489–508.PubMed Goldberg, M. E., & Bruce, C. J. (1990). Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. Journal of Neurophysiology, 64, 489–508.PubMed
Zurück zum Zitat Hallett, P. E., & Lightstone, A. D. (1976). Saccadic eye movements towards stimuli triggered by prior saccades. Vision Research, 16, 107–114.PubMedCrossRef Hallett, P. E., & Lightstone, A. D. (1976). Saccadic eye movements towards stimuli triggered by prior saccades. Vision Research, 16, 107–114.PubMedCrossRef
Zurück zum Zitat Heiser, L. M., & Colby, C. L. (2005). Spatial updating in area LIP is independent of saccade direction. Journal of Neurophysiology, 95, 2751–5767.PubMedCrossRef Heiser, L. M., & Colby, C. L. (2005). Spatial updating in area LIP is independent of saccade direction. Journal of Neurophysiology, 95, 2751–5767.PubMedCrossRef
Zurück zum Zitat Howard, I. P. (1982). Human visual orientation. New York: Wiley. Howard, I. P. (1982). Human visual orientation. New York: Wiley.
Zurück zum Zitat Isa, T. (2002). Intrinsic processing in the mammalian superior colliculus. Current Opinion in Neurobiology, 12, 668–677.PubMedCrossRef Isa, T. (2002). Intrinsic processing in the mammalian superior colliculus. Current Opinion in Neurobiology, 12, 668–677.PubMedCrossRef
Zurück zum Zitat Keith, G. P., Blohm, G., & Crawford, J. D. (2006a). A recurrent neural network for trans-saccadic spatial updating produces receptive field remapping and suppressed moving hills. Poster session 500, Presented at the Vision Sciences Society, 6th Annual Meeting, Sarasota, FL. Keith, G. P., Blohm, G., & Crawford, J. D. (2006a). A recurrent neural network for trans-saccadic spatial updating produces receptive field remapping and suppressed moving hills. Poster session 500, Presented at the Vision Sciences Society, 6th Annual Meeting, Sarasota, FL.
Zurück zum Zitat Keith, G. P., Smith, M. A., & Crawford, J. D. (2006b). Functional organization within a neural network trained to update target representations across 3-D saccades. Journal of Computational Neuroscience, 22(2), 191–209. Keith, G. P., Smith, M. A., & Crawford, J. D. (2006b). Functional organization within a neural network trained to update target representations across 3-D saccades. Journal of Computational Neuroscience, 22(2), 191–209.
Zurück zum Zitat Keith, G. P., Wang, H., & Crawford, J. D. (2005). A recurrent neural network model of the temporal dynamics of spatial remapping. Poster session 287.14, Presented at the Society for Neuroscience 35th Annual Meeting, Washington, DC. Keith, G. P., Wang, H., & Crawford, J. D. (2005). A recurrent neural network model of the temporal dynamics of spatial remapping. Poster session 287.14, Presented at the Society for Neuroscience 35th Annual Meeting, Washington, DC.
Zurück zum Zitat Klier, E. M., Wang, H., & Crawford, J. D. (2001). The superior colliculus encodes gaze commands in retinal coordinates. Nature Neuroscience, 4, 627–632.PubMedCrossRef Klier, E. M., Wang, H., & Crawford, J. D. (2001). The superior colliculus encodes gaze commands in retinal coordinates. Nature Neuroscience, 4, 627–632.PubMedCrossRef
Zurück zum Zitat Klier, E. M., Wang, H., & Crawford, J. D. (2003). Three-dimensional eye-head coordination is implemented downstream from the superior colliculus. Journal of Neurophysiology, 89, 2839–2853.PubMedCrossRef Klier, E. M., Wang, H., & Crawford, J. D. (2003). Three-dimensional eye-head coordination is implemented downstream from the superior colliculus. Journal of Neurophysiology, 89, 2839–2853.PubMedCrossRef
Zurück zum Zitat Krommenhoek, K. P., van Opstal, A. J., Gielen, C. C. A. M., & van Gisbergen, J. A. M. (1993). Remapping of neural activity in the motor colliculus: A neural network study. Vision Research, 33, 1287–1298.PubMedCrossRef Krommenhoek, K. P., van Opstal, A. J., Gielen, C. C. A. M., & van Gisbergen, J. A. M. (1993). Remapping of neural activity in the motor colliculus: A neural network study. Vision Research, 33, 1287–1298.PubMedCrossRef
Zurück zum Zitat Mays, L. E., & Sparks, D. L. (1980a). Dissociation of visual and saccade-related responses in superior colliculus neurons. Journal of Neurophysiology, 43, 207–232. Mays, L. E., & Sparks, D. L. (1980a). Dissociation of visual and saccade-related responses in superior colliculus neurons. Journal of Neurophysiology, 43, 207–232.
Zurück zum Zitat Mays, L. E., & Sparks, D. L. (1980b). Saccades are spatially, not retinocentrically, coded. Science, 208, 1163–1165.CrossRef Mays, L. E., & Sparks, D. L. (1980b). Saccades are spatially, not retinocentrically, coded. Science, 208, 1163–1165.CrossRef
Zurück zum Zitat Medendorp, W. P., Smith, M. A., Tweed, D. B., & Crawford, J. D. (2002). Rotational remapping in human spatial memory during eye and head motion. Journal of Neuroscience, 22(RC196), 1–4. Medendorp, W. P., Smith, M. A., Tweed, D. B., & Crawford, J. D. (2002). Rotational remapping in human spatial memory during eye and head motion. Journal of Neuroscience, 22(RC196), 1–4.
Zurück zum Zitat Meredith, M. A., & Ramoa, A. S. (1998). Intrinsic circuitry of the superior colliculus: Pharmacophysiological identification of horizontally oriented inhibitory interneurons. Journal of Neurophysiology, 79, 1597–1602.PubMed Meredith, M. A., & Ramoa, A. S. (1998). Intrinsic circuitry of the superior colliculus: Pharmacophysiological identification of horizontally oriented inhibitory interneurons. Journal of Neurophysiology, 79, 1597–1602.PubMed
Zurück zum Zitat Munoz, D. P., & Wurtz, R. H. (1995a). Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and build-up neurons. Journal of Neurophysiology, 73, 2313–2333. Munoz, D. P., & Wurtz, R. H. (1995a). Saccade-related activity in monkey superior colliculus. I. Characteristics of burst and build-up neurons. Journal of Neurophysiology, 73, 2313–2333.
Zurück zum Zitat Munoz, D. P., & Wurtz, R. H. (1995b). Saccade-related activity in monkey superior colliculus. II. Spread of activity during saccades. Journal of Neurophysiology, 73, 2334–2348. Munoz, D. P., & Wurtz, R. H. (1995b). Saccade-related activity in monkey superior colliculus. II. Spread of activity during saccades. Journal of Neurophysiology, 73, 2334–2348.
Zurück zum Zitat Nakamura, K., & Colby, C. L. (2002). Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proceedings of National Academy Science United States of America, 99, 4026–4031.CrossRef Nakamura, K., & Colby, C. L. (2002). Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proceedings of National Academy Science United States of America, 99, 4026–4031.CrossRef
Zurück zum Zitat Paré, M., & Wurtz, R. H. (1997). Monkey posterior parietal cortex neurons antidromically activated from superior colliculus. Journal of Neurophysiology, 78, 3493–3497.PubMed Paré, M., & Wurtz, R. H. (1997). Monkey posterior parietal cortex neurons antidromically activated from superior colliculus. Journal of Neurophysiology, 78, 3493–3497.PubMed
Zurück zum Zitat Quaia, C., Optican, L. M., & Goldberg, M. E. (1998). The maintenance of spatial accuracy by the perisaccadic remapping of visual receptive fields. Neural Networks, 11, 1229–1240.PubMedCrossRef Quaia, C., Optican, L. M., & Goldberg, M. E. (1998). The maintenance of spatial accuracy by the perisaccadic remapping of visual receptive fields. Neural Networks, 11, 1229–1240.PubMedCrossRef
Zurück zum Zitat Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533–536.CrossRef Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533–536.CrossRef
Zurück zum Zitat Russo, G. S., & Bruce, C. J. (1996). Neurons in the supplementary eye field of the rhesus monkeys code visual targets and saccadic eye movements in an oculocentric coordinate system. Journal of Neurophysiology, 76, 825–848.PubMed Russo, G. S., & Bruce, C. J. (1996). Neurons in the supplementary eye field of the rhesus monkeys code visual targets and saccadic eye movements in an oculocentric coordinate system. Journal of Neurophysiology, 76, 825–848.PubMed
Zurück zum Zitat Sabes, P. N., Breznen, B., & Andersen, R. A. (2002). Parietal representation of object-based saccades. Journal of Neurophysiology, 88, 1815–1829.PubMed Sabes, P. N., Breznen, B., & Andersen, R. A. (2002). Parietal representation of object-based saccades. Journal of Neurophysiology, 88, 1815–1829.PubMed
Zurück zum Zitat Smith, M. A., & Crawford, J. D. (2001). Implications of ocular kinematics for the internal updating of visual space. Journal of Neurophysiology, 86, 2112–2127.PubMed Smith, M. A., & Crawford, J. D. (2001). Implications of ocular kinematics for the internal updating of visual space. Journal of Neurophysiology, 86, 2112–2127.PubMed
Zurück zum Zitat Smith, M. A., & Crawford, J. D. (2005). A distributed population mechanism for the 3-D oculomotor reference frame transformation. Journal of Neurophysiology, 93, 1742–1761.PubMedCrossRef Smith, M. A., & Crawford, J. D. (2005). A distributed population mechanism for the 3-D oculomotor reference frame transformation. Journal of Neurophysiology, 93, 1742–1761.PubMedCrossRef
Zurück zum Zitat Sommer, M. A., & Wurtz, R. H. (2000). Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. Journal of Neurophysiology, 83, 1979–2001.PubMed Sommer, M. A., & Wurtz, R. H. (2000). Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. Journal of Neurophysiology, 83, 1979–2001.PubMed
Zurück zum Zitat Sommer, M. A., & Wurtz, R. H. (2004). What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge. Journal of Neurophysiology, 91, 1403–1423.PubMedCrossRef Sommer, M. A., & Wurtz, R. H. (2004). What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge. Journal of Neurophysiology, 91, 1403–1423.PubMedCrossRef
Zurück zum Zitat Sparks, D. L. (1988). Neural cartography: Sensory and motor maps in the superior colliculus. Brain Behavior and Evolution, 31, 49–56.CrossRef Sparks, D. L. (1988). Neural cartography: Sensory and motor maps in the superior colliculus. Brain Behavior and Evolution, 31, 49–56.CrossRef
Zurück zum Zitat Sparks, D. L. (1989). The neural encoding of the location of targets for saccadic eye movements. Journal of Experimental Biology, 146, 195–207.PubMed Sparks, D. L. (1989). The neural encoding of the location of targets for saccadic eye movements. Journal of Experimental Biology, 146, 195–207.PubMed
Zurück zum Zitat Sparks, D. L. (2002). The brainstem control of saccadic eye movements. Nature Reviews Neuroscience, 3, 952–964.PubMedCrossRef Sparks, D. L. (2002). The brainstem control of saccadic eye movements. Nature Reviews Neuroscience, 3, 952–964.PubMedCrossRef
Zurück zum Zitat Suzuki, Y., Buttner-Ennever, J. A., Straumann, D., Hepp, K., Hess, B. J. M., & Henn, V. (1995) Deficits in torsional and vertical rapid eye movements and shift of Listing's plane after uni- and bilateral lesions of the rostral interstitial nucleus of the medial longitudinal fasciculus. Experimental Brain Research, 106(2), 215–232.CrossRef Suzuki, Y., Buttner-Ennever, J. A., Straumann, D., Hepp, K., Hess, B. J. M., & Henn, V. (1995) Deficits in torsional and vertical rapid eye movements and shift of Listing's plane after uni- and bilateral lesions of the rostral interstitial nucleus of the medial longitudinal fasciculus. Experimental Brain Research, 106(2), 215–232.CrossRef
Zurück zum Zitat Their, P., & Andersen, R. A. (1998). Electrical microstimulation distinguishes distinct saccade-related areas in the posterior parietal cortex. Journal of Neurophysiology, 80, 1713–1785.PubMed Their, P., & Andersen, R. A. (1998). Electrical microstimulation distinguishes distinct saccade-related areas in the posterior parietal cortex. Journal of Neurophysiology, 80, 1713–1785.PubMed
Zurück zum Zitat Tweed, D. B., & Vilis, T. (1990). Geometric relations of eye position and velocity vectors during saccades. Vision Research, 30, 111–127.PubMedCrossRef Tweed, D. B., & Vilis, T. (1990). Geometric relations of eye position and velocity vectors during saccades. Vision Research, 30, 111–127.PubMedCrossRef
Zurück zum Zitat Tweed, D. B., Cadera, W., & Vilis, T. (1990). Computing three-dimensional eye position quaternions and eye velocity from search coil signals. Vision Research, 30, 97–110.PubMedCrossRef Tweed, D. B., Cadera, W., & Vilis, T. (1990). Computing three-dimensional eye position quaternions and eye velocity from search coil signals. Vision Research, 30, 97–110.PubMedCrossRef
Zurück zum Zitat Umeno, M. M., & Goldberg, M. E. (1997). Spatial processing in the monkey frontal eye field I. Predictive visual responses. Journal of Neurophysiology, 78, 1373–1383.PubMed Umeno, M. M., & Goldberg, M. E. (1997). Spatial processing in the monkey frontal eye field I. Predictive visual responses. Journal of Neurophysiology, 78, 1373–1383.PubMed
Zurück zum Zitat Umeno, M. M., & Goldberg, M. E. (2001). Spatial processing in the monkey frontal eye field II. Memory responses. Journal of Neurophysiology, 86, 2344–2352.PubMed Umeno, M. M., & Goldberg, M. E. (2001). Spatial processing in the monkey frontal eye field II. Memory responses. Journal of Neurophysiology, 86, 2344–2352.PubMed
Zurück zum Zitat Walker, M. F., Fitzgibbon, E. J., & Goldberg, M. E. (1995). Neurons in the monkey superior colliculus predict the result of impending saccadic eye movements. Journal of Neurophysiology, 73, 1988–2003.PubMed Walker, M. F., Fitzgibbon, E. J., & Goldberg, M. E. (1995). Neurons in the monkey superior colliculus predict the result of impending saccadic eye movements. Journal of Neurophysiology, 73, 1988–2003.PubMed
Zurück zum Zitat White, R. L. III, & Snyder, L. H. (2004). A neural network model of flexible spatial updating. Journal of Neurophysiology, 91, 1608–1619.PubMedCrossRef White, R. L. III, & Snyder, L. H. (2004). A neural network model of flexible spatial updating. Journal of Neurophysiology, 91, 1608–1619.PubMedCrossRef
Zurück zum Zitat Xing, J., & Andersen, R. A. (2000). Memory activity of LIP neurons for sequential eye movements simulated with neural networks. Journal of Neurophysiology, 84, 651–665.PubMed Xing, J., & Andersen, R. A. (2000). Memory activity of LIP neurons for sequential eye movements simulated with neural networks. Journal of Neurophysiology, 84, 651–665.PubMed
Zurück zum Zitat Zee, D. S., Optican, L. M., Cook, J. D., & Robinson, D. A. (1976). Slow saccades in spinocerebellar degeneration. Archivos de Neurobiologia, 33, 243–251. Zee, D. S., Optican, L. M., Cook, J. D., & Robinson, D. A. (1976). Slow saccades in spinocerebellar degeneration. Archivos de Neurobiologia, 33, 243–251.
Metadaten
Titel
Saccade-related remapping of target representations between topographic maps: a neural network study
verfasst von
Gerald P. Keith
J. Douglas Crawford
Publikationsdatum
01.04.2008
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2008
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-007-0046-6

Weitere Artikel der Ausgabe 2/2008

Journal of Computational Neuroscience 2/2008 Zur Ausgabe

Premium Partner