Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2008

01.04.2008

A computational study of synaptic mechanisms of partial memory transfer in cerebellar vestibulo-ocular-reflex learning

verfasst von: Naoki Masuda, Shun-ichi Amari

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2008

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There is a debate regarding whether motor memory is stored in the cerebellar cortex, or the cerebellar nuclei, or both. Memory may be acquired in the cortex and then be transferred to the cerebellar nuclei. Based on a dynamical system modeling with a minimal set of variables, we theoretically investigated possible mechanisms of memory transfer and consolidation in the context of vestibulo-ocular reflex learning. We tested different plasticity rules for synapses in the cerebellar nuclei and took robustness of behavior against parameter variation as the criterion of plausibility of a model variant. In the most plausible scenarios, mossy-fiber nucleus-neuron synapses or Purkinje-cell nucleus-neuron synapses are plastic on a slow time scale and store permanent memory, whose content is passed from the cerebellar cortex storing transient memory. In these scenarios, synaptic strengths are potentiated when the mossy-fiber afferents to the nuclei are active during a pause in Purkinje-cell activities. Furthermore, assuming that mossy fibers create a limited variety of signals compared to parallel fibers, our model shows partial memory transfer from the cortex to the nuclei.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aizenman, C. D., & Linden, D. J. (1999). Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. Journal of Neurophysiology, 82, 1697–1709.PubMed Aizenman, C. D., & Linden, D. J. (1999). Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. Journal of Neurophysiology, 82, 1697–1709.PubMed
Zurück zum Zitat Aizenman, C. D., & Linden, D. J. (2000). Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons. Nature Neuroscience, 3, 109–111.PubMedCrossRef Aizenman, C. D., & Linden, D. J. (2000). Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons. Nature Neuroscience, 3, 109–111.PubMedCrossRef
Zurück zum Zitat Aizenman, C. D., Manis, P. B., & Linden, D. J. (1998). Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron, 21, 827–835.PubMedCrossRef Aizenman, C. D., Manis, P. B., & Linden, D. J. (1998). Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron, 21, 827–835.PubMedCrossRef
Zurück zum Zitat Akemann, W., & Knöpfel, T. (2006). Interaction of Kv3 potassium channels and resurgent sodium current influences the rate of spontaneous firing of Purkinje neurons. Journal of Neuroscience, 26, 4602–4612.PubMedCrossRef Akemann, W., & Knöpfel, T. (2006). Interaction of Kv3 potassium channels and resurgent sodium current influences the rate of spontaneous firing of Purkinje neurons. Journal of Neuroscience, 26, 4602–4612.PubMedCrossRef
Zurück zum Zitat Albus, J. S. (1971). A theory of cerebellar function. Mathematical Biosciences, 10, 25–61.CrossRef Albus, J. S. (1971). A theory of cerebellar function. Mathematical Biosciences, 10, 25–61.CrossRef
Zurück zum Zitat Armstrong, D. M., & Rawson, J. A. (1979). Activity patterns of cerebellar cortical neurons and climbing fibre afferents in the awake cat. Journal of Physiology, 289, 425–448.PubMed Armstrong, D. M., & Rawson, J. A. (1979). Activity patterns of cerebellar cortical neurons and climbing fibre afferents in the awake cat. Journal of Physiology, 289, 425–448.PubMed
Zurück zum Zitat Boyden, E. S., Katoh, A., & Raymond, J. L. (2004). Cerebellum-dependent learning: The role of multiple plasticity mechanisms. Annual Review of Neuroscience, 27, 581–609.PubMedCrossRef Boyden, E. S., Katoh, A., & Raymond, J. L. (2004). Cerebellum-dependent learning: The role of multiple plasticity mechanisms. Annual Review of Neuroscience, 27, 581–609.PubMedCrossRef
Zurück zum Zitat Coesmans, M., Weber, J. T., De Zeeuw, C. I., & Hansel, C. (2004). Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron, 44, 691–700.PubMedCrossRef Coesmans, M., Weber, J. T., De Zeeuw, C. I., & Hansel, C. (2004). Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron, 44, 691–700.PubMedCrossRef
Zurück zum Zitat Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience—computational and mathematical modeling of neural systems. MIT. Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience—computational and mathematical modeling of neural systems. MIT.
Zurück zum Zitat Davies, P., & Melvill Jones, G. (1976). An adaptive neural model compatible with plastic changes induced in the human vestibulo-ocular reflex by prolonged optical reversal of vision. Brain Research, 103, 546–550.PubMedCrossRef Davies, P., & Melvill Jones, G. (1976). An adaptive neural model compatible with plastic changes induced in the human vestibulo-ocular reflex by prolonged optical reversal of vision. Brain Research, 103, 546–550.PubMedCrossRef
Zurück zum Zitat De Schutter, E., & Bjaalie, J. G. (2001). Coding in the granular layer of the cerebellum. Progress in Brain Research, 130, 279–296.PubMedCrossRef De Schutter, E., & Bjaalie, J. G. (2001). Coding in the granular layer of the cerebellum. Progress in Brain Research, 130, 279–296.PubMedCrossRef
Zurück zum Zitat du Lac, S., Raymond, J. L., Sejnowski, T. J., & Lisberger, S. G. (1995). Learning and memory in the vestibulo-ocular reflex. Annual Review of Neuroscience, 18, 409–441.PubMedCrossRef du Lac, S., Raymond, J. L., Sejnowski, T. J., & Lisberger, S. G. (1995). Learning and memory in the vestibulo-ocular reflex. Annual Review of Neuroscience, 18, 409–441.PubMedCrossRef
Zurück zum Zitat Fujita, M. (1982). Adaptive filter model of the cerebellum. Biological Cybernetics, 45, 195–206.PubMedCrossRef Fujita, M. (1982). Adaptive filter model of the cerebellum. Biological Cybernetics, 45, 195–206.PubMedCrossRef
Zurück zum Zitat Goldberg, J. M., & Fernandez, C. (1971). Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. Journal of Neurophysiology, 34, 635–660.PubMed Goldberg, J. M., & Fernandez, C. (1971). Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. Journal of Neurophysiology, 34, 635–660.PubMed
Zurück zum Zitat Hansel, C., Linden, D. J., & D’Angelo, E. (2001). Beyond parallel fiber LTD: the diversity of synaptic and nonsynaptic plasticity in the cerebellum. Nature Neuroscience, 4, 467–475.PubMed Hansel, C., Linden, D. J., & D’Angelo, E. (2001). Beyond parallel fiber LTD: the diversity of synaptic and nonsynaptic plasticity in the cerebellum. Nature Neuroscience, 4, 467–475.PubMed
Zurück zum Zitat Ito, M. (2001). Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiological Reviews, 81, 1143–1195.PubMed Ito, M. (2001). Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiological Reviews, 81, 1143–1195.PubMed
Zurück zum Zitat Ito, M., Jastreboff, P. J., & Miyashita, Y. (1982a). Specific effects of unilateral lesions in the flocculus upon eye movements in albino rabbits. Experimental Brain Research, 45, 233–242.CrossRef Ito, M., Jastreboff, P. J., & Miyashita, Y. (1982a). Specific effects of unilateral lesions in the flocculus upon eye movements in albino rabbits. Experimental Brain Research, 45, 233–242.CrossRef
Zurück zum Zitat Ito, M., Sakurai, M., & Tongroach, P. (1982b). Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. Journal of Physiology, 324, 113–134. Ito, M., Sakurai, M., & Tongroach, P. (1982b). Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. Journal of Physiology, 324, 113–134.
Zurück zum Zitat Kassardjian, C. D., Yao-Fang, T., Chung, J. Y. J., Heskin, R., Peterson, M. J., & Broussard, D. M. (2005). The site of a motor memory shifts with consolidation. Journal Neuroscience, 25, 7979–7985.CrossRef Kassardjian, C. D., Yao-Fang, T., Chung, J. Y. J., Heskin, R., Peterson, M. J., & Broussard, D. M. (2005). The site of a motor memory shifts with consolidation. Journal Neuroscience, 25, 7979–7985.CrossRef
Zurück zum Zitat Kleim, J. A., Freeman Jr., J. H., Bruneau, R., Nolan, B. C., Cooper, N. R., Zook, A. et al. (2002). Synapse formation is associated with memory storage in the cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 99, 13228–13231.PubMedCrossRef Kleim, J. A., Freeman Jr., J. H., Bruneau, R., Nolan, B. C., Cooper, N. R., Zook, A. et al. (2002). Synapse formation is associated with memory storage in the cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 99, 13228–13231.PubMedCrossRef
Zurück zum Zitat Kramer, P. D., Shelhamer, M., & Zee, D. S. (1995). Short-term adaptation of the phase of the vestibulo-ocular reflex (VOR) in normal human subjects. Experimental Brain Research, 106, 318–326.CrossRef Kramer, P. D., Shelhamer, M., & Zee, D. S. (1995). Short-term adaptation of the phase of the vestibulo-ocular reflex (VOR) in normal human subjects. Experimental Brain Research, 106, 318–326.CrossRef
Zurück zum Zitat LeDoux, M. S., Hurst, D. C., & Lorden, J. F. (1998). Single-unit activity of cerebellar nuclear cells in the awake genetically dystonic rat. Neuroscience, 86, 533–545.PubMedCrossRef LeDoux, M. S., Hurst, D. C., & Lorden, J. F. (1998). Single-unit activity of cerebellar nuclear cells in the awake genetically dystonic rat. Neuroscience, 86, 533–545.PubMedCrossRef
Zurück zum Zitat Lisberger, S. G. (1988). The neural basis for learning of simple motor skills. Science, 242, 728–735.PubMedCrossRef Lisberger, S. G. (1988). The neural basis for learning of simple motor skills. Science, 242, 728–735.PubMedCrossRef
Zurück zum Zitat Lisberger, S. F., & Sejnowski, T. J. (1992). Motor learning in a recurrent network model based on the vestibulo-ocular reflex. Nature, 360, 159–161.PubMedCrossRef Lisberger, S. F., & Sejnowski, T. J. (1992). Motor learning in a recurrent network model based on the vestibulo-ocular reflex. Nature, 360, 159–161.PubMedCrossRef
Zurück zum Zitat Luebke, A. E., & Robinson, D. A. (1994). Gain changes of the cat's vestibulo-ocular reflex after flocculus deactivation. Experimental Brain Research, 98, 379–390.CrossRef Luebke, A. E., & Robinson, D. A. (1994). Gain changes of the cat's vestibulo-ocular reflex after flocculus deactivation. Experimental Brain Research, 98, 379–390.CrossRef
Zurück zum Zitat Marr, D. (1969). A theory of cerebellar cortex. Journal of Physiology, 202, 437–470.PubMed Marr, D. (1969). A theory of cerebellar cortex. Journal of Physiology, 202, 437–470.PubMed
Zurück zum Zitat Masuda, N., & Amari, S. (2006). Modeling memory transfer and savings in cerebellar motor learning. Advances in Neural Information Processing Systems, 18, 859–866 (Y. Weiss, B. Scholkopf, J. Platt Eds.). Masuda, N., & Amari, S. (2006). Modeling memory transfer and savings in cerebellar motor learning. Advances in Neural Information Processing Systems, 18, 859–866 (Y. Weiss, B. Scholkopf, J. Platt Eds.).
Zurück zum Zitat Mauk, M. D. (1997). Roles of cerebellar cortex and nuclei in motor learning: Contradictions or clues? Neuron, 18, 343–346.PubMedCrossRef Mauk, M. D. (1997). Roles of cerebellar cortex and nuclei in motor learning: Contradictions or clues? Neuron, 18, 343–346.PubMedCrossRef
Zurück zum Zitat Mauk, M. D., & Donegan, N. H. (1997). A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learning & Memory, 3, 130–158.CrossRef Mauk, M. D., & Donegan, N. H. (1997). A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learning & Memory, 3, 130–158.CrossRef
Zurück zum Zitat McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419–457.PubMedCrossRef McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419–457.PubMedCrossRef
Zurück zum Zitat Medina, J. F., Garcia, K. S., & Mauk, M. D. (2001). A mechanism for savings in the cerebellum. Journal of Neuroscience, 21, 4081–4089.PubMed Medina, J. F., Garcia, K. S., & Mauk, M. D. (2001). A mechanism for savings in the cerebellum. Journal of Neuroscience, 21, 4081–4089.PubMed
Zurück zum Zitat Medina, J. F., Garcia, K. S., Nores, W. L., Taylor, N. M., & Mauk, M. D. (2000). Timing mechanisms in the cerebellum: Testing predictions of a large-scale computer simulation. Journal of Neuroscience, 20, 5516–5525.PubMed Medina, J. F., Garcia, K. S., Nores, W. L., Taylor, N. M., & Mauk, M. D. (2000). Timing mechanisms in the cerebellum: Testing predictions of a large-scale computer simulation. Journal of Neuroscience, 20, 5516–5525.PubMed
Zurück zum Zitat Medina, J. F., & Mauk, M. D. (1999). Simulations of cerebellar motor learning: Computational analysis of plasticity at the mossy fiber to deep nucleus synapse. Journal of Neuroscience, 19, 7140–7151.PubMed Medina, J. F., & Mauk, M. D. (1999). Simulations of cerebellar motor learning: Computational analysis of plasticity at the mossy fiber to deep nucleus synapse. Journal of Neuroscience, 19, 7140–7151.PubMed
Zurück zum Zitat Medina, J. F., Repa, J. C., Mauk, M. D., & LeDoux, J. E. (2002). Parallels between cerebellum- and amygdala-dependent conditioning. Nature Review Neuroscience, 3, 122–131.CrossRef Medina, J. F., Repa, J. C., Mauk, M. D., & LeDoux, J. E. (2002). Parallels between cerebellum- and amygdala-dependent conditioning. Nature Review Neuroscience, 3, 122–131.CrossRef
Zurück zum Zitat Miles, F. A., & Lisberger, S. G. (1981). Plasticity in the vestibulo-ocular reflex: A new hypothesis. Annual Review Neuroscience, 4, 273–299.CrossRef Miles, F. A., & Lisberger, S. G. (1981). Plasticity in the vestibulo-ocular reflex: A new hypothesis. Annual Review Neuroscience, 4, 273–299.CrossRef
Zurück zum Zitat Miyachi, S., Hikosaka, O., & Lu, X. (2002). Differential activation of monkey striatal neurons in the early and late stages of procedural learning. Experimental Brain Research, 146, 122–126.CrossRef Miyachi, S., Hikosaka, O., & Lu, X. (2002). Differential activation of monkey striatal neurons in the early and late stages of procedural learning. Experimental Brain Research, 146, 122–126.CrossRef
Zurück zum Zitat Miyachi, S., Hikosaka, O., Miyashita, K., Kárádi, Z., & Rand, M. K. (1997). Differential roles of monkey striatum in learning of sequential hand movement. Experimental Brain Research, 115, 1–5.CrossRef Miyachi, S., Hikosaka, O., Miyashita, K., Kárádi, Z., & Rand, M. K. (1997). Differential roles of monkey striatum in learning of sequential hand movement. Experimental Brain Research, 115, 1–5.CrossRef
Zurück zum Zitat Morishita, W., & Sastry, B. R. (1996). Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei. Journal of Neurophysiology, 76, 59–68.PubMed Morishita, W., & Sastry, B. R. (1996). Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei. Journal of Neurophysiology, 76, 59–68.PubMed
Zurück zum Zitat Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., Facchini, S. et al. (2002). Early consolidation in human primary motor cortex. Nature, 415, 640–644.PubMedCrossRef Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., Facchini, S. et al. (2002). Early consolidation in human primary motor cortex. Nature, 415, 640–644.PubMedCrossRef
Zurück zum Zitat Nagao, S., Kitamura, T., Nakamura, N., Hiramatsu, T., & Yamada, J. (1997). Differences of the primate flocculus and ventral paraflocculus in the mossy and climbing fiber input organization. Journal of Comparative Neurology, 382, 480–498.PubMedCrossRef Nagao, S., Kitamura, T., Nakamura, N., Hiramatsu, T., & Yamada, J. (1997). Differences of the primate flocculus and ventral paraflocculus in the mossy and climbing fiber input organization. Journal of Comparative Neurology, 382, 480–498.PubMedCrossRef
Zurück zum Zitat Nagao, S., & Kitazawa, H. (2003). Effects of reversible shutdown of the monkey flocculus on the retention of adaptation of the horizontal vestibulo-ocular reflex. Neuroscience, 118, 563–570.PubMedCrossRef Nagao, S., & Kitazawa, H. (2003). Effects of reversible shutdown of the monkey flocculus on the retention of adaptation of the horizontal vestibulo-ocular reflex. Neuroscience, 118, 563–570.PubMedCrossRef
Zurück zum Zitat Osanai, R., Nagao, S., Kitamura, T., Kawabata, I., & Yamada, J. (1999). Differences in mossy and climbing afferent sources between flocculus and ventral and dorsal paraflocculus in the rat. Experimental Brain Research, 124, 248–264.CrossRef Osanai, R., Nagao, S., Kitamura, T., Kawabata, I., & Yamada, J. (1999). Differences in mossy and climbing afferent sources between flocculus and ventral and dorsal paraflocculus in the rat. Experimental Brain Research, 124, 248–264.CrossRef
Zurück zum Zitat Ouardouz, M., & Sastry, B. R. (2000). Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei. Journal of Neurophysiology, 84, 1414–1421.PubMed Ouardouz, M., & Sastry, B. R. (2000). Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei. Journal of Neurophysiology, 84, 1414–1421.PubMed
Zurück zum Zitat Palkovits, M., Mezey, É., Hámori, J., & Szentágothai, J. (1977). Quantitative histological analysis of the cerebellar nuclei in the cat. I. numerical data on cells and on synapses. Experimental Brain Research, 28, 189–209.CrossRef Palkovits, M., Mezey, É., Hámori, J., & Szentágothai, J. (1977). Quantitative histological analysis of the cerebellar nuclei in the cat. I. numerical data on cells and on synapses. Experimental Brain Research, 28, 189–209.CrossRef
Zurück zum Zitat Pasupathy, A., & Miller, E. K. (2005). Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature, 433, 873–876.PubMedCrossRef Pasupathy, A., & Miller, E. K. (2005). Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature, 433, 873–876.PubMedCrossRef
Zurück zum Zitat Penhune, V. P., & Doyon, J. (2002). Dynamic cortical and subcortical networks in learning and delayed recall of timed motor sequences. Journal of Neuroscience, 22, 1397–1406.PubMed Penhune, V. P., & Doyon, J. (2002). Dynamic cortical and subcortical networks in learning and delayed recall of timed motor sequences. Journal of Neuroscience, 22, 1397–1406.PubMed
Zurück zum Zitat Penhune, V. B., & Doyon, J. (2005). Cerebellum and M1 interaction during early learning of timed motor sequences. Neuroimage, 26, 801–812.PubMedCrossRef Penhune, V. B., & Doyon, J. (2005). Cerebellum and M1 interaction during early learning of timed motor sequences. Neuroimage, 26, 801–812.PubMedCrossRef
Zurück zum Zitat Perrett, S. P., Luis, B. P., & Mauk, M. D. (1993). Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. Journal of Neuroscience, 13, 1708–1718.PubMed Perrett, S. P., Luis, B. P., & Mauk, M. D. (1993). Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. Journal of Neuroscience, 13, 1708–1718.PubMed
Zurück zum Zitat Perrett, S. P., & Mauk, M. D. (1995). Extinction of conditioned eyelid responses requires the anterior lobe of cerebellar cortex. Journal of Neuroscience, 15, 2074–2080.PubMed Perrett, S. P., & Mauk, M. D. (1995). Extinction of conditioned eyelid responses requires the anterior lobe of cerebellar cortex. Journal of Neuroscience, 15, 2074–2080.PubMed
Zurück zum Zitat Peterson, B. W., Baker, J. F., & Houk, J. C. (1991). A model of adaptive control of vestibuloocular reflex based on properties of cross-axis adaptation. Annual New York Academy Science, 627, 319–337.CrossRef Peterson, B. W., Baker, J. F., & Houk, J. C. (1991). A model of adaptive control of vestibuloocular reflex based on properties of cross-axis adaptation. Annual New York Academy Science, 627, 319–337.CrossRef
Zurück zum Zitat Pugh, J. R., & Raman, I. M. (2006). Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current. Neuron, 51, 113–123.PubMedCrossRef Pugh, J. R., & Raman, I. M. (2006). Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current. Neuron, 51, 113–123.PubMedCrossRef
Zurück zum Zitat Racine, R. J., Wilson, D. A., Gingell, R., & Sunderland, D. (1986). Long-term potentiation in the interpositus and vestibular nuclei in the rat. Experimental Brain Research, 63, 158–162.CrossRef Racine, R. J., Wilson, D. A., Gingell, R., & Sunderland, D. (1986). Long-term potentiation in the interpositus and vestibular nuclei in the rat. Experimental Brain Research, 63, 158–162.CrossRef
Zurück zum Zitat Raymond, J. L., Lisberger, S. G., & Mauk, M. D. (1996). The cerebellum: A neuronal learning machine? Science, 272, 1126–1131.PubMedCrossRef Raymond, J. L., Lisberger, S. G., & Mauk, M. D. (1996). The cerebellum: A neuronal learning machine? Science, 272, 1126–1131.PubMedCrossRef
Zurück zum Zitat Repa, J. C., Muller, J., Apergis, J., Desrochers, T. M., Zhou, Y., & LeDoux, J. E. (2001). Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nature Neuroscience, 4, 724–731.PubMedCrossRef Repa, J. C., Muller, J., Apergis, J., Desrochers, T. M., Zhou, Y., & LeDoux, J. E. (2001). Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nature Neuroscience, 4, 724–731.PubMedCrossRef
Zurück zum Zitat Roland, N. C., & Jaeger, D. (2005). Coding of tactile response properties in the rat deep cerebellar nuclei. Journal of Neurophysiology, 94, 1236–1251.CrossRef Roland, N. C., & Jaeger, D. (2005). Coding of tactile response properties in the rat deep cerebellar nuclei. Journal of Neurophysiology, 94, 1236–1251.CrossRef
Zurück zum Zitat Raymond, J. L., & Lisberger, S. G. (1998). Neural learning rules for the vestibulo-ocular reflex. Journal of Neuroscience, 18, 9112–9129.PubMed Raymond, J. L., & Lisberger, S. G. (1998). Neural learning rules for the vestibulo-ocular reflex. Journal of Neuroscience, 18, 9112–9129.PubMed
Zurück zum Zitat Sakurai, M. (1987). Synaptic modification of parallel fibre-Purkinje cell transmission in in vitro guinea-pig cerebellar slices. Journal of Physiology, 394, 463–480.PubMed Sakurai, M. (1987). Synaptic modification of parallel fibre-Purkinje cell transmission in in vitro guinea-pig cerebellar slices. Journal of Physiology, 394, 463–480.PubMed
Zurück zum Zitat Shutoh, F., Ohki, M., Kitazawa, H., Itohara, S., & Nagao, S. (2006). Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation. Neuroscience, 139, 767–777.PubMedCrossRef Shutoh, F., Ohki, M., Kitazawa, H., Itohara, S., & Nagao, S. (2006). Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation. Neuroscience, 139, 767–777.PubMedCrossRef
Zurück zum Zitat Stickgold, R., Hobson, J. A., Fosse, R., & Fosse, M. (2001). Sleep, learning, and dreams: Off-line memory reprocessing. Science, 294, 1052–1057.PubMedCrossRef Stickgold, R., Hobson, J. A., Fosse, R., & Fosse, M. (2001). Sleep, learning, and dreams: Off-line memory reprocessing. Science, 294, 1052–1057.PubMedCrossRef
Zurück zum Zitat Sugihara, I., Ebata, S., & Shinoda, Y. (2004). Functional compartmentalization in the flocculus and the ventral dentate and dorsal group y nuclei: an analysis of single olivocerebellar axonal morphology. Journal of Compensation and Benefits, 470, 113. Sugihara, I., Ebata, S., & Shinoda, Y. (2004). Functional compartmentalization in the flocculus and the ventral dentate and dorsal group y nuclei: an analysis of single olivocerebellar axonal morphology. Journal of Compensation and Benefits, 470, 113.
Zurück zum Zitat Thach, W. T. (1968). Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. Journal of Neurophysiology, 31, 785–797.PubMed Thach, W. T. (1968). Discharge of Purkinje and cerebellar nuclear neurons during rapidly alternating arm movements in the monkey. Journal of Neurophysiology, 31, 785–797.PubMed
Zurück zum Zitat Walker, M. P., Brakefield, T., Hobson, J. A., & Stickgold, R. (2003). Dissociable stages of human memory consolidation and reconsolidation. Nature, 425, 616–620.PubMedCrossRef Walker, M. P., Brakefield, T., Hobson, J. A., & Stickgold, R. (2003). Dissociable stages of human memory consolidation and reconsolidation. Nature, 425, 616–620.PubMedCrossRef
Zurück zum Zitat Yamazaki, T., & Tanaka, S. (2005). Neural modeling of an internal clock. Neural Computation, 17, 1032–1058.PubMedCrossRef Yamazaki, T., & Tanaka, S. (2005). Neural modeling of an internal clock. Neural Computation, 17, 1032–1058.PubMedCrossRef
Zurück zum Zitat Zhang, W., & Linden, D. J. (2006). Long-term depression at the mossy fiber-deep cerebellar nucleus synapse. Journal of Neuroscience, 26, 6935–6944.PubMedCrossRef Zhang, W., & Linden, D. J. (2006). Long-term depression at the mossy fiber-deep cerebellar nucleus synapse. Journal of Neuroscience, 26, 6935–6944.PubMedCrossRef
Metadaten
Titel
A computational study of synaptic mechanisms of partial memory transfer in cerebellar vestibulo-ocular-reflex learning
verfasst von
Naoki Masuda
Shun-ichi Amari
Publikationsdatum
01.04.2008
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2008
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-007-0045-7

Weitere Artikel der Ausgabe 2/2008

Journal of Computational Neuroscience 2/2008 Zur Ausgabe

Premium Partner