Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2008

01.04.2008

The role of synaptic facilitation in spike coincidence detection

verfasst von: Jorge F. Mejías, Joaquín J. Torres

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2008

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using a realistic model of activity dependent dynamical synapse, which includes both depressing and facilitating mechanisms, we study the conditions in which a postsynaptic neuron efficiently detects temporal coincidences of spikes which arrive from N different presynaptic neurons at certain frequency f. A numerical and analytical treatment of that system shows that: (1) facilitation enhances the detection of correlated signals arriving from a subset of presynaptic excitatory neurons, and (2) the presence of facilitation yields to a better detection of firing rate changes in the presynaptic activity. We also observed that facilitation determines the existence of an optimal input frequency which allows the best performance for a wide (maximum) range of the neuron firing threshold. This optimal frequency can be controlled by means of facilitation parameters. Finally, we show that these results are robust even for very noisy signals and in the presence of synaptic fluctuations produced by the stochastic release of neurotransmitters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Note that it is the synaptic conductance, rather than the synaptic current, which depends on A SE ·y(t). Our assumption for the current, however, is a good approximation when the membrane potential V(t) is below the firing threshold V th and τ m  ≫ τ in , so that V(t) remains constant during the temporal variation of the synaptic conductance.
 
2
The specific value of Δ is not too critical for the results found if moderate values are used. In particular, it is convenient to have Δ~τ ref since this is a natural window for spike detection.
 
Literatur
Zurück zum Zitat Abbott, L. F., Varela, J. A., Sen, K., & Nelson, S. B. (1997). Synaptic depression and cortical gain control. Science, 275(5297), 220–224.PubMedCrossRef Abbott, L. F., Varela, J. A., Sen, K., & Nelson, S. B. (1997). Synaptic depression and cortical gain control. Science, 275(5297), 220–224.PubMedCrossRef
Zurück zum Zitat Azouz, R., & Gray, C. M. (2000). Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97(14), 8110–8115.PubMedCrossRef Azouz, R., & Gray, C. M. (2000). Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97(14), 8110–8115.PubMedCrossRef
Zurück zum Zitat Bertram, R., Sherman, A., & Stanley, E. F. (1996). Single-domain/bound calcium hypothesis of transmitter release and facilitation. Journal of Neurophysiology, 75, 1919–1931.PubMed Bertram, R., Sherman, A., & Stanley, E. F. (1996). Single-domain/bound calcium hypothesis of transmitter release and facilitation. Journal of Neurophysiology, 75, 1919–1931.PubMed
Zurück zum Zitat Buia, C. I., & Tiesinga, P. H. E. (2005). Rapid temporal modulation of synchrony in cortical interneuron networks with synaptic plasticity. Neurocomputing, 65–66, 809–815.CrossRef Buia, C. I., & Tiesinga, P. H. E. (2005). Rapid temporal modulation of synchrony in cortical interneuron networks with synaptic plasticity. Neurocomputing, 65–66, 809–815.CrossRef
Zurück zum Zitat Cortes, J. M., Torres, J. J., Marro, J., Garrido, P. L., & Kappen, H. J. (2006). Effects of fast presynaptic noise in attractor neural networks. Neural Computation, 18, 614–633.PubMedCrossRef Cortes, J. M., Torres, J. J., Marro, J., Garrido, P. L., & Kappen, H. J. (2006). Effects of fast presynaptic noise in attractor neural networks. Neural Computation, 18, 614–633.PubMedCrossRef
Zurück zum Zitat de la Rocha, J., & Parga, N. (2005). Short-term synaptic depression causes a non-monotonic response to correlated stimuli. Journal of Neuroscience, 25, 8416–8431.PubMedCrossRef de la Rocha, J., & Parga, N. (2005). Short-term synaptic depression causes a non-monotonic response to correlated stimuli. Journal of Neuroscience, 25, 8416–8431.PubMedCrossRef
Zurück zum Zitat Destexhe, A., & Marder, E. (2004). Plasticity in single neuron and circuit computations. Nature, 431, 789–795.PubMedCrossRef Destexhe, A., & Marder, E. (2004). Plasticity in single neuron and circuit computations. Nature, 431, 789–795.PubMedCrossRef
Zurück zum Zitat Dobrunz, L. E., & Stevens, C. F. (1997). Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron, 18, 995–1008.PubMedCrossRef Dobrunz, L. E., & Stevens, C. F. (1997). Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron, 18, 995–1008.PubMedCrossRef
Zurück zum Zitat Holcman, D., & Tsodyks, M. (2006). The emergence of up and down states in cortical networks. PLoS Computational Biology, 2(3), 174–181.CrossRef Holcman, D., & Tsodyks, M. (2006). The emergence of up and down states in cortical networks. PLoS Computational Biology, 2(3), 174–181.CrossRef
Zurück zum Zitat Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America, 79, 2554–2558.PubMedCrossRef Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America, 79, 2554–2558.PubMedCrossRef
Zurück zum Zitat Kistler, W., & van Hemmen, J. (1999). Short-term synaptic plasticity and network behavior. Neural Computation, 11, 1579–1594.PubMedCrossRef Kistler, W., & van Hemmen, J. (1999). Short-term synaptic plasticity and network behavior. Neural Computation, 11, 1579–1594.PubMedCrossRef
Zurück zum Zitat Koch, C. (1999). Biophysics of computation: Information processing in single neurons. London: Oxford University Press. Koch, C. (1999). Biophysics of computation: Information processing in single neurons. London: Oxford University Press.
Zurück zum Zitat Markram, H., Wang, Y., & Tsodyks, M. (1998). Differential signaling via the same axon of neocortical pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America, 95, 5323–5328.PubMedCrossRef Markram, H., Wang, Y., & Tsodyks, M. (1998). Differential signaling via the same axon of neocortical pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America, 95, 5323–5328.PubMedCrossRef
Zurück zum Zitat Matveev, V., & Wang, X. J. (2000). Differential short-term synaptic plasticity and transmission of complex spike trains: To depress or to facilitate? Cerebral Cortex, 10, 1143–1153.PubMedCrossRef Matveev, V., & Wang, X. J. (2000). Differential short-term synaptic plasticity and transmission of complex spike trains: To depress or to facilitate? Cerebral Cortex, 10, 1143–1153.PubMedCrossRef
Zurück zum Zitat McAdams, C., & Maunsell, J. (1999). Effects of attention on orientation-tuning functions of single neurons in macaque cortical area v4. Journal of Neuroscience, 19, 431–441.PubMed McAdams, C., & Maunsell, J. (1999). Effects of attention on orientation-tuning functions of single neurons in macaque cortical area v4. Journal of Neuroscience, 19, 431–441.PubMed
Zurück zum Zitat Pantic, L., Torres, J. J., & Kappen, H. J. (2003). Coincidence detection with dynamic synapses. Network: Computation in Neural Systems, 14, 17–33.CrossRef Pantic, L., Torres, J. J., & Kappen, H. J. (2003). Coincidence detection with dynamic synapses. Network: Computation in Neural Systems, 14, 17–33.CrossRef
Zurück zum Zitat Pantic, L., Torres, J. J., Kappen, H. J., & Gielen, S. C. A. M. (2002). Associative memmory with dynamic synapses. Neural Computation, 14, 2903–2923.PubMedCrossRef Pantic, L., Torres, J. J., Kappen, H. J., & Gielen, S. C. A. M. (2002). Associative memmory with dynamic synapses. Neural Computation, 14, 2903–2923.PubMedCrossRef
Zurück zum Zitat Plesser, H. E., & Gerstner, W. (2000). Noise in integrate-and-fire neurons: From stochastic input to escape rates. Neural Computation 12, 367–384.PubMedCrossRef Plesser, H. E., & Gerstner, W. (2000). Noise in integrate-and-fire neurons: From stochastic input to escape rates. Neural Computation 12, 367–384.PubMedCrossRef
Zurück zum Zitat Torres, J. J., Cortes, J., Marro, J., & Kappen, H. (2007). Competition between synaptic depression and facilitation in attractor neural networks. Neural Computation, 19(10), q-bio.NC/0604019. Torres, J. J., Cortes, J., Marro, J., & Kappen, H. (2007). Competition between synaptic depression and facilitation in attractor neural networks. Neural Computation, 19(10), q-bio.NC/0604019.
Zurück zum Zitat Tsodyks, M. V., & Markram, H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proceedings of the National Academy of Sciences of the United States of America, 94, 719–723.PubMedCrossRef Tsodyks, M. V., & Markram, H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proceedings of the National Academy of Sciences of the United States of America, 94, 719–723.PubMedCrossRef
Zurück zum Zitat Tsodyks, M. V., Pawelzik, K., & Markram, H. (1998). Neural networks with dynamic synapses. Neural Computation, 10, 821–835.PubMedCrossRef Tsodyks, M. V., Pawelzik, K., & Markram, H. (1998). Neural networks with dynamic synapses. Neural Computation, 10, 821–835.PubMedCrossRef
Zurück zum Zitat Wang, Y., Markram, H., Goodman, P. H., Berger, T. K., Ma, J., & Goldman-Rakic, P. S. (2006). Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature Neuroscience, 9, 534–542.PubMedCrossRef Wang, Y., Markram, H., Goodman, P. H., Berger, T. K., Ma, J., & Goldman-Rakic, P. S. (2006). Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature Neuroscience, 9, 534–542.PubMedCrossRef
Metadaten
Titel
The role of synaptic facilitation in spike coincidence detection
verfasst von
Jorge F. Mejías
Joaquín J. Torres
Publikationsdatum
01.04.2008
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2008
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-007-0052-8

Weitere Artikel der Ausgabe 2/2008

Journal of Computational Neuroscience 2/2008 Zur Ausgabe

Premium Partner