Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2008

01.04.2008

Influence of frequency and temperature on the mechanisms of nerve conduction block induced by high-frequency biphasic electrical current

verfasst von: Jicheng Wang, Bing Shen, James R. Roppolo, William C. de Groat, Changfeng Tai

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2008

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The influences of stimulation frequency and temperature on mechanisms of nerve conduction block induced by high-frequency biphasic electrical current were investigated using a lumped circuit model of the myelinated axon based on Schwarz and Eikhof (SE) equations. The simulation analysis showed that a temperature–frequency relationship was determined by the axonal membrane dynamics (i.e. how fast the ion channels can open or close.). At a certain temperature, the axonal conduction block always occurred when the period of biphasic stimulation was smaller than the action potential duration (APD). When the temperature decreased from 37 to 15°C, the membrane dynamics slowed down resulting in an APD increase from 0.4 to 2.4 ms accompanied by a decrease in the minimal blocking frequency from 4 to 0.5 kHz. The simulation results also indicated that as the stimulation frequency increased the mechanism of conduction block changed from a cathodal/anodal block to a block dependent upon continuous activation of potassium channels. Understanding the interaction between the minimal blocking frequency and temperature could promote a better understanding of the mechanisms of high frequency induced axonal conduction block and the clinical application of this method for blocking nerve conduction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Agnew, W. F., & McCreery, D. H. (1990). Neural prostheses: Fundamental studies. Englewood Cliffs, NJ: Prentice Hall. Agnew, W. F., & McCreery, D. H. (1990). Neural prostheses: Fundamental studies. Englewood Cliffs, NJ: Prentice Hall.
Zurück zum Zitat Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. J. (2004). Potassium model for slow (2–3 Hz) in vivo neocotical paroxysmal oscillations. Journal of Neurophysiology, 92, 1116–1132.PubMedCrossRef Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. J. (2004). Potassium model for slow (2–3 Hz) in vivo neocotical paroxysmal oscillations. Journal of Neurophysiology, 92, 1116–1132.PubMedCrossRef
Zurück zum Zitat Bhadra, N., Bhadra, N., Kilgore, K. L., & Gustafson, K. J. (2006). High frequency electrical conduction block of pudendal nerve. Journal of Neural Engineering, 3, 180–187.PubMedCrossRef Bhadra, N., Bhadra, N., Kilgore, K. L., & Gustafson, K. J. (2006). High frequency electrical conduction block of pudendal nerve. Journal of Neural Engineering, 3, 180–187.PubMedCrossRef
Zurück zum Zitat Bhadra, N., & Kilgore, K. L. (2005). High-frequency electrical conduction block of mammalian peripheral motor nerve. Muscle Nerve, 32, 782–790.PubMedCrossRef Bhadra, N., & Kilgore, K. L. (2005). High-frequency electrical conduction block of mammalian peripheral motor nerve. Muscle Nerve, 32, 782–790.PubMedCrossRef
Zurück zum Zitat Bikson, M., Lian, J., Hahn, P. J., Stacey, W. C., Sciortino, C., & Durand, D. M. (2001). Suppression of epileptiform activity by high frequency sinusoidal fields in rat hippocampal slices. Journal of Physiology (London), 531, 181–191.CrossRef Bikson, M., Lian, J., Hahn, P. J., Stacey, W. C., Sciortino, C., & Durand, D. M. (2001). Suppression of epileptiform activity by high frequency sinusoidal fields in rat hippocampal slices. Journal of Physiology (London), 531, 181–191.CrossRef
Zurück zum Zitat Bowman, B. R., & McNeal, D. R. (1986). Response of single alpha motoneurons to high frequency pulse train: Firing behavior and conduction block phenomenon. Applied Neurophysiology, 49, 121–138.PubMedCrossRef Bowman, B. R., & McNeal, D. R. (1986). Response of single alpha motoneurons to high frequency pulse train: Firing behavior and conduction block phenomenon. Applied Neurophysiology, 49, 121–138.PubMedCrossRef
Zurück zum Zitat Boyce, W. E., & Diprima, R. C. (1997). Elementary differential equations and boundary value problems (6th ed.). New York: Wiley. Boyce, W. E., & Diprima, R. C. (1997). Elementary differential equations and boundary value problems (6th ed.). New York: Wiley.
Zurück zum Zitat Chiu, S. Y., Ritchie, J. M., Rogart, R. B., & Stagg D. (1979). A quantitative description of membrane currents in rabbit myelinated nerve. Journal of Physiology (London), 292, 149–166. Chiu, S. Y., Ritchie, J. M., Rogart, R. B., & Stagg D. (1979). A quantitative description of membrane currents in rabbit myelinated nerve. Journal of Physiology (London), 292, 149–166.
Zurück zum Zitat Elwassif, M. M., Kong, Q., Vazquez, M., & Bikson M. (2006). Bio-heat transfer model of deep brain stimulation-induced temperature changes. Journal of Neural Engineering, 3, 306–315.PubMedCrossRef Elwassif, M. M., Kong, Q., Vazquez, M., & Bikson M. (2006). Bio-heat transfer model of deep brain stimulation-induced temperature changes. Journal of Neural Engineering, 3, 306–315.PubMedCrossRef
Zurück zum Zitat Frankenhaeuser, B., & Huxley, A. F. (1964). The action potential in the myelinated nerve fibre of Xenopus Laevis as computed on the basis of voltage clamp data. Journal of Physiology (London), 171, 302–315. Frankenhaeuser, B., & Huxley, A. F. (1964). The action potential in the myelinated nerve fibre of Xenopus Laevis as computed on the basis of voltage clamp data. Journal of Physiology (London), 171, 302–315.
Zurück zum Zitat Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology (London), 117, 500–544. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology (London), 117, 500–544.
Zurück zum Zitat Kager, H., Wadman, W. J., & Somjen, G. G. (2000). Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. Journal of Neurophysiology, 84, 495–512.PubMed Kager, H., Wadman, W. J., & Somjen, G. G. (2000). Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. Journal of Neurophysiology, 84, 495–512.PubMed
Zurück zum Zitat Kager, H., Wadman, W. J., & Somjen, G. G. (2002). Condition for the triggering of spreading depression studied with computer simulations. Journal of Neurophysiology, 88, 2700–2712.PubMedCrossRef Kager, H., Wadman, W. J., & Somjen, G. G. (2002). Condition for the triggering of spreading depression studied with computer simulations. Journal of Neurophysiology, 88, 2700–2712.PubMedCrossRef
Zurück zum Zitat Kilgore, K. L., & Bhadra N. (2004). Nerve conduction block utilising high-frequency alternating current. Medical & Biological Engineering & Computing, 42, 394–406.CrossRef Kilgore, K. L., & Bhadra N. (2004). Nerve conduction block utilising high-frequency alternating current. Medical & Biological Engineering & Computing, 42, 394–406.CrossRef
Zurück zum Zitat McIntyre, C. C., Richardson, A. G., & Grill, W. M. (2002). Modeling the excitability of mammalian nerve fibers: Influence of afterpotentials on the recovery cycle. Journal of Neurophysiology, 87, 995–1006.PubMed McIntyre, C. C., Richardson, A. G., & Grill, W. M. (2002). Modeling the excitability of mammalian nerve fibers: Influence of afterpotentials on the recovery cycle. Journal of Neurophysiology, 87, 995–1006.PubMed
Zurück zum Zitat Nashold, B. S., Goldner, J. L., Mullen, J. B., & Bright, D. S. (1982). Long-term pain control by direct peripheral-nerve stimulation. Journal of Bone and Joint Surgery, 64A, 1–10. Nashold, B. S., Goldner, J. L., Mullen, J. B., & Bright, D. S. (1982). Long-term pain control by direct peripheral-nerve stimulation. Journal of Bone and Joint Surgery, 64A, 1–10.
Zurück zum Zitat Rattay, F., & Aberham M. (1993). Modeling axon membranes for functional electrical stimulation. IEEE Transactions on Biomedical Engineering, 40, 1201–1209.PubMedCrossRef Rattay, F., & Aberham M. (1993). Modeling axon membranes for functional electrical stimulation. IEEE Transactions on Biomedical Engineering, 40, 1201–1209.PubMedCrossRef
Zurück zum Zitat Reboul, J., & Rosenblueth A. (1939). The action of alternating currents upon the electrical excitability of nerve. American Journal of Physiology, 125, 205–215. Reboul, J., & Rosenblueth A. (1939). The action of alternating currents upon the electrical excitability of nerve. American Journal of Physiology, 125, 205–215.
Zurück zum Zitat Renganathan, M., Cummins, T. R., & Waxman, S. G. (2001). Contribution of Nav 1.8 sodium channels to action potential electrogenesis in DRG neurons. Journal of Neurophysiology, 86, 629–640.PubMed Renganathan, M., Cummins, T. R., & Waxman, S. G. (2001). Contribution of Nav 1.8 sodium channels to action potential electrogenesis in DRG neurons. Journal of Neurophysiology, 86, 629–640.PubMed
Zurück zum Zitat Roper, J., & Schwarz, J. R. (1989). Heterogeneous distribution of fast and slow potassium channels in myelinated rat nerve fibres. Journal of Physiology (London), 416, 93–110. Roper, J., & Schwarz, J. R. (1989). Heterogeneous distribution of fast and slow potassium channels in myelinated rat nerve fibres. Journal of Physiology (London), 416, 93–110.
Zurück zum Zitat Rosenblueth, A., & Reboul J. (1939). The blocking and deblocking effects of alternating currents on nerve. American Journal of Physiology, 125, 251–264. Rosenblueth, A., & Reboul J. (1939). The blocking and deblocking effects of alternating currents on nerve. American Journal of Physiology, 125, 251–264.
Zurück zum Zitat Schwarz, J. R., & Eikhof G. (1987). Na currents and action potentials in rat myelinated nerve fibres at 20 and 37°C. Pflugers Archiv, 409, 569–577.PubMedCrossRef Schwarz, J. R., & Eikhof G. (1987). Na currents and action potentials in rat myelinated nerve fibres at 20 and 37°C. Pflugers Archiv, 409, 569–577.PubMedCrossRef
Zurück zum Zitat Schwarz, J. R., Glassmeier, G., Cooper, E. C., Kao, T. C., Nodera, H., Tabuena, D., et al. (2006). KCNQ channels mediate Iks, a slow K+ current regulating excitability in the rat node of Ranvier. Journal of Physiology, 573, 17–34.PubMedCrossRef Schwarz, J. R., Glassmeier, G., Cooper, E. C., Kao, T. C., Nodera, H., Tabuena, D., et al. (2006). KCNQ channels mediate Iks, a slow K+ current regulating excitability in the rat node of Ranvier. Journal of Physiology, 573, 17–34.PubMedCrossRef
Zurück zum Zitat Schwarz, J. R., Reid, G., & Bostock H. (1995). Action potentials and membrane currents in the human node of Ranvier. Pflugers Archiv, 430, 283–292.PubMedCrossRef Schwarz, J. R., Reid, G., & Bostock H. (1995). Action potentials and membrane currents in the human node of Ranvier. Pflugers Archiv, 430, 283–292.PubMedCrossRef
Zurück zum Zitat Tai, C., de Groat, W. C., & Roppolo, J. R. (2005a). Simulation analysis of conduction block in unmyelinated axons induced by high-frequency biphasic electrical currents. IEEE Transactions on Biomedical Engineering, 52, 1323–1332.CrossRef Tai, C., de Groat, W. C., & Roppolo, J. R. (2005a). Simulation analysis of conduction block in unmyelinated axons induced by high-frequency biphasic electrical currents. IEEE Transactions on Biomedical Engineering, 52, 1323–1332.CrossRef
Zurück zum Zitat Tai, C., de Groat, W. C., & Roppolo, J. R. (2005b). Simulation of nerve block by high-frequency sinusoidal electrical current based on the Hodgkin–Huxley model. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13, 415–422.CrossRef Tai, C., de Groat, W. C., & Roppolo, J. R. (2005b). Simulation of nerve block by high-frequency sinusoidal electrical current based on the Hodgkin–Huxley model. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13, 415–422.CrossRef
Zurück zum Zitat Tai, C., Roppolo, J. R., & de Groat, W. C. (2004). Block of external urethral sphincter contraction by high frequency electrical stimulation of pudendal nerve. Journal of Urology, 172, 2069–2072.PubMedCrossRef Tai, C., Roppolo, J. R., & de Groat, W. C. (2004). Block of external urethral sphincter contraction by high frequency electrical stimulation of pudendal nerve. Journal of Urology, 172, 2069–2072.PubMedCrossRef
Zurück zum Zitat Tai, C., Roppolo, J. R., & de Groat, W. C. (2005c). Response of external urethral sphincter to high frequency biphasic electrical stimulation of pudendal nerve. Journal of Urology, 174, 782–786.CrossRef Tai, C., Roppolo, J. R., & de Groat, W. C. (2005c). Response of external urethral sphincter to high frequency biphasic electrical stimulation of pudendal nerve. Journal of Urology, 174, 782–786.CrossRef
Zurück zum Zitat Tanner, J. A. (1962). Reversible blocking of nerve conduction by alternating-current excitation. Nature, 195, 712–713.PubMedCrossRef Tanner, J. A. (1962). Reversible blocking of nerve conduction by alternating-current excitation. Nature, 195, 712–713.PubMedCrossRef
Zurück zum Zitat Williamson, R. P., & Andrews, B. J. (2005). Localized electrical nerve blocking. IEEE Transactions on Biomedical Engineering, 52, 362–370.PubMedCrossRef Williamson, R. P., & Andrews, B. J. (2005). Localized electrical nerve blocking. IEEE Transactions on Biomedical Engineering, 52, 362–370.PubMedCrossRef
Zurück zum Zitat Zhang, X., Roppolo, J. R., de Groat, W. C., & Tai C. (2006a). Simulation analysis of conduction block in myelinated axons induced by high-frequency biphasic rectangular pulses. IEEE Transactions on Biomedical Engineering, 53, 1433–1436.CrossRef Zhang, X., Roppolo, J. R., de Groat, W. C., & Tai C. (2006a). Simulation analysis of conduction block in myelinated axons induced by high-frequency biphasic rectangular pulses. IEEE Transactions on Biomedical Engineering, 53, 1433–1436.CrossRef
Zurück zum Zitat Zhang, X., Roppolo, J. R., de Groat, W. C., Tai C (2006b) Mechanism of nerve conduction block induced by high-frequency biphasic electrical currents. IEEE Transactions on Biomedical Engineering, 53, 2445–2454.CrossRef Zhang, X., Roppolo, J. R., de Groat, W. C., Tai C (2006b) Mechanism of nerve conduction block induced by high-frequency biphasic electrical currents. IEEE Transactions on Biomedical Engineering, 53, 2445–2454.CrossRef
Metadaten
Titel
Influence of frequency and temperature on the mechanisms of nerve conduction block induced by high-frequency biphasic electrical current
verfasst von
Jicheng Wang
Bing Shen
James R. Roppolo
William C. de Groat
Changfeng Tai
Publikationsdatum
01.04.2008
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2008
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-007-0050-x

Weitere Artikel der Ausgabe 2/2008

Journal of Computational Neuroscience 2/2008 Zur Ausgabe

Premium Partner