Skip to main content
Erschienen in: BIT Numerical Mathematics 4/2020

12.05.2020

Semi-implicit Euler–Maruyama method for non-linear time-changed stochastic differential equations

verfasst von: Chang-Song Deng, Wei Liu

Erschienen in: BIT Numerical Mathematics | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The semi-implicit Euler–Maruyama (EM) method is investigated to approximate a class of time-changed stochastic differential equations, whose drift coefficient can grow super-linearly and diffusion coefficient obeys the global Lipschitz condition. The strong convergence of the semi-implicit EM is proved and the convergence rate is discussed. When the Bernstein function of the inverse subordinator (time-change) is regularly varying at zero, we establish the mean square polynomial stability of the underlying equations. In addition, the numerical method is proved to be able to preserve such an asymptotic property. Numerical simulations are presented to demonstrate the theoretical results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation, Volume 27 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1987) Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation, Volume 27 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1987)
2.
Zurück zum Zitat Gajda, J., Magdziarz, M.: Fractional Fokker–Planck equation with tempered \(\alpha \)-stable waiting times: Langevin picture and computer simulation. Phys. Rev. E (3) 82(1), 011117 (2010)MathSciNetCrossRef Gajda, J., Magdziarz, M.: Fractional Fokker–Planck equation with tempered \(\alpha \)-stable waiting times: Langevin picture and computer simulation. Phys. Rev. E (3) 82(1), 011117 (2010)MathSciNetCrossRef
3.
Zurück zum Zitat Higham, D.J., Mao, X., Yuan, C.: Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations. SIAM J. Numer. Anal. 45(2), 592–609 (2007). (electronic)MathSciNetCrossRef Higham, D.J., Mao, X., Yuan, C.: Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations. SIAM J. Numer. Anal. 45(2), 592–609 (2007). (electronic)MathSciNetCrossRef
4.
Zurück zum Zitat Hu, Y.: Semi-implicit Euler–Maruyama scheme for stiff stochastic equations. In: Korezlioglu, H., Oksendal, B., Ustunel, A.S. (eds.) Stochastic Analysis and Related Topics V (Silivri, 1994). Progress in Probability, pp. 183–202. Birkhäuser, Boston (1996) Hu, Y.: Semi-implicit Euler–Maruyama scheme for stiff stochastic equations. In: Korezlioglu, H., Oksendal, B., Ustunel, A.S. (eds.) Stochastic Analysis and Related Topics V (Silivri, 1994). Progress in Probability, pp. 183–202. Birkhäuser, Boston (1996)
5.
Zurück zum Zitat Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467(2130), 1563–1576 (2011)MathSciNetMATH Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467(2130), 1563–1576 (2011)MathSciNetMATH
6.
Zurück zum Zitat Jin, S., Kobayashi, K.: Strong approximation of stochastic differential equations driven by a time-changed Brownian motion with time-space-dependent coefficients. J. Math. Anal. Appl. 476(2), 619–636 (2019)MathSciNetCrossRef Jin, S., Kobayashi, K.: Strong approximation of stochastic differential equations driven by a time-changed Brownian motion with time-space-dependent coefficients. J. Math. Anal. Appl. 476(2), 619–636 (2019)MathSciNetCrossRef
7.
Zurück zum Zitat Jum, E.: Numerical approximation of stochastic differential equations driven by Lévy motion with infinitely many jumps. Ph.D. thesis, University of Tennessee - Knoxville (2015) Jum, E.: Numerical approximation of stochastic differential equations driven by Lévy motion with infinitely many jumps. Ph.D. thesis, University of Tennessee - Knoxville (2015)
8.
Zurück zum Zitat Jum, E., Kobayashi, K.: A strong and weak approximation scheme for stochastic differential equations driven by a time-changed Brownian motion. Probab. Math. Stat. 36(2), 201–220 (2016)MathSciNetMATH Jum, E., Kobayashi, K.: A strong and weak approximation scheme for stochastic differential equations driven by a time-changed Brownian motion. Probab. Math. Stat. 36(2), 201–220 (2016)MathSciNetMATH
9.
Zurück zum Zitat Khasminskii, R.: Stochastic Stability of Differential Equations. With Contributions by G. N. Milstein and M. B. Nevelson. Completely Revised and Enlarged Second Edition. Stochastic Modelling and Applied Probability, vol. 66. Springer, Heidelberg (2012)MATH Khasminskii, R.: Stochastic Stability of Differential Equations. With Contributions by G. N. Milstein and M. B. Nevelson. Completely Revised and Enlarged Second Edition. Stochastic Modelling and Applied Probability, vol. 66. Springer, Heidelberg (2012)MATH
10.
Zurück zum Zitat Kobayashi, K.: Stochastic calculus for a time-changed semimartingale and the associated stochastic differential equations. J. Theor. Probab. 24(3), 789–820 (2011)MathSciNetCrossRef Kobayashi, K.: Stochastic calculus for a time-changed semimartingale and the associated stochastic differential equations. J. Theor. Probab. 24(3), 789–820 (2011)MathSciNetCrossRef
11.
Zurück zum Zitat Li, X., Ma, Q., Yang, H., Yuan, C.: The numerical invariant measure of stochastic differential equations with Markovian switching. SIAM J. Numer. Anal. 56(3), 1435–1455 (2018)MathSciNetCrossRef Li, X., Ma, Q., Yang, H., Yuan, C.: The numerical invariant measure of stochastic differential equations with Markovian switching. SIAM J. Numer. Anal. 56(3), 1435–1455 (2018)MathSciNetCrossRef
12.
Zurück zum Zitat Liu, W., Mao, X.: Numerical stationary distribution and its convergence for nonlinear stochastic differential equations. J. Comput. Appl. Math. 276, 16–29 (2015)MathSciNetCrossRef Liu, W., Mao, X.: Numerical stationary distribution and its convergence for nonlinear stochastic differential equations. J. Comput. Appl. Math. 276, 16–29 (2015)MathSciNetCrossRef
13.
Zurück zum Zitat Magdziarz, M.: Stochastic representation of subdiffusion processes with time-dependent drift. Stoch. Process. Appl. 119(10), 3238–3252 (2009)MathSciNetCrossRef Magdziarz, M.: Stochastic representation of subdiffusion processes with time-dependent drift. Stoch. Process. Appl. 119(10), 3238–3252 (2009)MathSciNetCrossRef
14.
Zurück zum Zitat Magdziarz, M., Orzel, S., Weron, A.: Option pricing in subdiffusive Bachelier model. J. Stat. Phys. 145(1), 187–203 (2011)MathSciNetCrossRef Magdziarz, M., Orzel, S., Weron, A.: Option pricing in subdiffusive Bachelier model. J. Stat. Phys. 145(1), 187–203 (2011)MathSciNetCrossRef
15.
Zurück zum Zitat Mao, X.: Stochastic Differential Equations and Applications, second edn. Horwood Publishing Limited, Chichester (2008)CrossRef Mao, X.: Stochastic Differential Equations and Applications, second edn. Horwood Publishing Limited, Chichester (2008)CrossRef
16.
Zurück zum Zitat Mao, X.: Stability of Stochastic Differential Equations with Respect to Semimartingales. Pitman Research Notes in Mathematics Series, vol. 251. Longman Scientific & Technical, Harlow (1991). (copublished in the United States with Wiley, New York) Mao, X.: Stability of Stochastic Differential Equations with Respect to Semimartingales. Pitman Research Notes in Mathematics Series, vol. 251. Longman Scientific & Technical, Harlow (1991). (copublished in the United States with Wiley, New York)
17.
Zurück zum Zitat Mao, X., Szpruch, L.: Strong convergence rates for backward Euler–Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients. Stochastics 85(1), 144–171 (2013)MathSciNetCrossRef Mao, X., Szpruch, L.: Strong convergence rates for backward Euler–Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients. Stochastics 85(1), 144–171 (2013)MathSciNetCrossRef
18.
Zurück zum Zitat Meerschaert, M.M., Scheffler, H.-P.: Limit theorems for continuous-time random walks with infinite mean waiting times. J. Appl. Probab. 41(3), 623–638 (2004)MathSciNetCrossRef Meerschaert, M.M., Scheffler, H.-P.: Limit theorems for continuous-time random walks with infinite mean waiting times. J. Appl. Probab. 41(3), 623–638 (2004)MathSciNetCrossRef
19.
Zurück zum Zitat Nane, E., Ni, Y.: Stability of the solution of stochastic differential equation driven by time-changed Lévy noise. Proc. Am. Math. Soc. 145(7), 3085–3104 (2017)CrossRef Nane, E., Ni, Y.: Stability of the solution of stochastic differential equation driven by time-changed Lévy noise. Proc. Am. Math. Soc. 145(7), 3085–3104 (2017)CrossRef
20.
Zurück zum Zitat Nane, E., Ni, Y.: Path stability of stochastic differential equations driven by time-changed Lévy noises. ALEA Lat. Am. J. Probab. Math. Stat. 15(1), 479–507 (2018)MathSciNetCrossRef Nane, E., Ni, Y.: Path stability of stochastic differential equations driven by time-changed Lévy noises. ALEA Lat. Am. J. Probab. Math. Stat. 15(1), 479–507 (2018)MathSciNetCrossRef
21.
Zurück zum Zitat Neuenkirch, A., Szpruch, L.: First order strong approximations of scalar SDEs defined in a domain. Numer. Math. 128(1), 103–136 (2014)MathSciNetCrossRef Neuenkirch, A., Szpruch, L.: First order strong approximations of scalar SDEs defined in a domain. Numer. Math. 128(1), 103–136 (2014)MathSciNetCrossRef
22.
Zurück zum Zitat Protter, P.E.: Stochastic Integration and Differential Equations. Applications of Mathematics (New York). Stochastic Modelling and Applied Probability, vol. 21, 2nd edn. Springer, Berlin (2004) Protter, P.E.: Stochastic Integration and Differential Equations. Applications of Mathematics (New York). Stochastic Modelling and Applied Probability, vol. 21, 2nd edn. Springer, Berlin (2004)
23.
Zurück zum Zitat Schilling, R.L., Song, R., Vondraček, Z.: Bernstein Functions. Theory and Applications, Volume 37 of De Gruyter Studies in Mathematics, 2nd edn. Walter de Gruyter & Co., Berlin (2012) Schilling, R.L., Song, R., Vondraček, Z.: Bernstein Functions. Theory and Applications, Volume 37 of De Gruyter Studies in Mathematics, 2nd edn. Walter de Gruyter & Co., Berlin (2012)
24.
Zurück zum Zitat Schurz, H.: Stability, Stationarity, and Boundedness of Some Implicit Numerical Methods for Stochastic Differential Equations and applications. Logos Verlag, Berlin (1997)MATH Schurz, H.: Stability, Stationarity, and Boundedness of Some Implicit Numerical Methods for Stochastic Differential Equations and applications. Logos Verlag, Berlin (1997)MATH
25.
Zurück zum Zitat Umarov, S., Hahn, M., Kobayashi, K.: Beyond the Triangle: Brownian Motion, Ito calculus, and Fokker–Planck Equation—Fractional Generalizations. World Scientific Publishing Co. Pte. Ltd., Hackensack (2018)CrossRef Umarov, S., Hahn, M., Kobayashi, K.: Beyond the Triangle: Brownian Motion, Ito calculus, and Fokker–Planck Equation—Fractional Generalizations. World Scientific Publishing Co. Pte. Ltd., Hackensack (2018)CrossRef
26.
Zurück zum Zitat Wang, L., Wang, X.: Convergence of the semi-implicit Euler method for stochastic age-dependent population equations with Poisson jumps. Appl. Math. Model. 34(8), 2034–2043 (2010)MathSciNetCrossRef Wang, L., Wang, X.: Convergence of the semi-implicit Euler method for stochastic age-dependent population equations with Poisson jumps. Appl. Math. Model. 34(8), 2034–2043 (2010)MathSciNetCrossRef
27.
Metadaten
Titel
Semi-implicit Euler–Maruyama method for non-linear time-changed stochastic differential equations
verfasst von
Chang-Song Deng
Wei Liu
Publikationsdatum
12.05.2020
Verlag
Springer Netherlands
Erschienen in
BIT Numerical Mathematics / Ausgabe 4/2020
Print ISSN: 0006-3835
Elektronische ISSN: 1572-9125
DOI
https://doi.org/10.1007/s10543-020-00810-7

Weitere Artikel der Ausgabe 4/2020

BIT Numerical Mathematics 4/2020 Zur Ausgabe

Premium Partner