Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2020

28.04.2020

Significance of Martensite Reversion and Austenite Stability to the Mechanical Properties and Transformation-Induced Plasticity Effect of Austenitic Stainless Steels

verfasst von: Mohammad Javad Sohrabi, Hamed Mirzadeh, Changiz Dehghanian

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The phenomena occurring during continuous heating of cold-rolled AISI 304L and AISI 316L stainless steels from room temperature up to 1150 °C were studied. X-ray diffraction (XRD), scanning electron microscopy (SEM), hardness measurement, and tensile testing were used for characterization. The XRD analysis revealed that the AISI 304L stainless steel was more susceptible to the strain-induced martensitic transformation during cold rolling, and the martensite reversion kinetics during annealing was faster in this stainless steel. The latter was related to the effect of molybdenum in AISI 316L stainless steel, and it was rationalized based on the concept of continuous heating reversion temperature. Due to the presence of the retained austenite in AISI 316L stainless steel, the strength fell more slowly during continuous heating and the equiaxed microstructure was obtained at higher temperatures after recrystallization of the retained austenite. The latter resulted in the micron-size grain sizes in the AISI 316L stainless steel while ultrafine-grained (UFG) microstructure was obtained for the AISI 304L stainless steel as revealed by SEM images. In general, higher ultimate tensile strength (UTS) and total elongation values were observed for the AISI 304L stainless steel. These were related to factors other than the grain size strengthening (as presented by the Hall–Petch law), where the transformation-induced plasticity (TRIP) effect was found to be a major parameter affecting the tensile strength and ductility of AISI 304L stainless steel and this effect became more pronounced at coarser grain sizes. However, the TRIP effect was marginal in the case of AISI 316L stainless steel. This revealed the importance of the stability of the austenite phase in determining the mechanical properties of austenitic stainless steels.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R, 2009, 65, p 39–104 K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R, 2009, 65, p 39–104
2.
Zurück zum Zitat R. Ramesh, I. Dinaharan, R. Kumar, and E.T. Akinlabi, Microstructure and Mechanical Characterization of Friction-Stir-Welded 316L Austenitic Stainless Steels, J. Mater. Eng. Perform., 2019, 28(1), p 498–511 R. Ramesh, I. Dinaharan, R. Kumar, and E.T. Akinlabi, Microstructure and Mechanical Characterization of Friction-Stir-Welded 316L Austenitic Stainless Steels, J. Mater. Eng. Perform., 2019, 28(1), p 498–511
3.
Zurück zum Zitat M.A. Meyers, P.Y. Chen, A.Y.M. Lin, and Y. Seki, Biological Materials: Structure and Mechanical Properties, Prog. Mater Sci., 2008, 53, p 1–206 M.A. Meyers, P.Y. Chen, A.Y.M. Lin, and Y. Seki, Biological Materials: Structure and Mechanical Properties, Prog. Mater Sci., 2008, 53, p 1–206
4.
Zurück zum Zitat M.V. Karavaeva, M.M. Abramova, N.A. Enikeev, G.I. Raab, and R.Z. Valiev, Superior Strength of Austenitic Steel Produced by Combined Processing, Including Equal-Channel Angular Pressing and Rolling, Metals, 2016, 6, p 310 M.V. Karavaeva, M.M. Abramova, N.A. Enikeev, G.I. Raab, and R.Z. Valiev, Superior Strength of Austenitic Steel Produced by Combined Processing, Including Equal-Channel Angular Pressing and Rolling, Metals, 2016, 6, p 310
5.
Zurück zum Zitat T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207 T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207
6.
Zurück zum Zitat S. Sabooni, F. Karimzadeh, M.H. Enayati, and A.H.W. Ngan, Friction-Stir Welding of Ultrafine Grained Austenitic 304L stainless Steel Produced by Martensitic Thermomechanical Processing, Mater. Des., 2015, 76, p 130–140 S. Sabooni, F. Karimzadeh, M.H. Enayati, and A.H.W. Ngan, Friction-Stir Welding of Ultrafine Grained Austenitic 304L stainless Steel Produced by Martensitic Thermomechanical Processing, Mater. Des., 2015, 76, p 130–140
7.
Zurück zum Zitat H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, and P.R. Calvillo, EBSD Study of a Hot Deformed Austenitic Stainless Steel, Mater. Sci. Eng. A, 2012, 538, p 236–245 H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, and P.R. Calvillo, EBSD Study of a Hot Deformed Austenitic Stainless Steel, Mater. Sci. Eng. A, 2012, 538, p 236–245
8.
Zurück zum Zitat S. Mandal, A.K. Bhaduri, and V.S. Sarma, A Study on Microstructural Evolution and Dynamic Recrystallization during Isothermal Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2011, 42, p 1062–1072 S. Mandal, A.K. Bhaduri, and V.S. Sarma, A Study on Microstructural Evolution and Dynamic Recrystallization during Isothermal Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2011, 42, p 1062–1072
9.
Zurück zum Zitat G.S. Sun, L.X. Du, J. Hu, and R.D.K. Misra, Microstructural Evolution and Recrystallization Behavior of Cold Rolled Austenitic Stainless Steel with Dual Phase Microstructure during Isothermal Annealing, Mater. Sci. Eng. A, 2018, 709, p 254–264 G.S. Sun, L.X. Du, J. Hu, and R.D.K. Misra, Microstructural Evolution and Recrystallization Behavior of Cold Rolled Austenitic Stainless Steel with Dual Phase Microstructure during Isothermal Annealing, Mater. Sci. Eng. A, 2018, 709, p 254–264
10.
Zurück zum Zitat M.B.R. Silva, J. Gallego, J.M. Cabrera, O. Balancin, and A.M. Jorge, Jr., Interaction Between Recrystallization and Strain-Induced Precipitation in a High Nb-and N-Bearing Austenitic Stainless Steel: Influence of the Interpass Time, Mater. Sci. Eng. A, 2015, 637, p 189–200 M.B.R. Silva, J. Gallego, J.M. Cabrera, O. Balancin, and A.M. Jorge, Jr., Interaction Between Recrystallization and Strain-Induced Precipitation in a High Nb-and N-Bearing Austenitic Stainless Steel: Influence of the Interpass Time, Mater. Sci. Eng. A, 2015, 637, p 189–200
11.
Zurück zum Zitat P. Mallick, N.K. Tewary, S.K. Ghosh, and P.P. Chattopadhyay, Effect of TMCP on Microstructure and Mechanical Properties of 304 Stainless Steel, Steel Res. Int., 2018, 89, p 1800103 P. Mallick, N.K. Tewary, S.K. Ghosh, and P.P. Chattopadhyay, Effect of TMCP on Microstructure and Mechanical Properties of 304 Stainless Steel, Steel Res. Int., 2018, 89, p 1800103
12.
Zurück zum Zitat K. Tomimura, S. Takaki, S. Tanimoto, and Y. Tokunaga, Optimal Chemical Composition in Fe-Cr-Ni Alloys for Ultra Grain Refining by Reversion from Deformation Induced Martensite, ISIJ Int., 1991, 31, p 721–727 K. Tomimura, S. Takaki, S. Tanimoto, and Y. Tokunaga, Optimal Chemical Composition in Fe-Cr-Ni Alloys for Ultra Grain Refining by Reversion from Deformation Induced Martensite, ISIJ Int., 1991, 31, p 721–727
13.
Zurück zum Zitat A. Järvenpää, M. Jaskari, A. Kisko, and P. Karjalainen, Processing and Properties of Reversion-Treated Austenitic Stainless Steels, Metals, 2020, 10, p 281 A. Järvenpää, M. Jaskari, A. Kisko, and P. Karjalainen, Processing and Properties of Reversion-Treated Austenitic Stainless Steels, Metals, 2020, 10, p 281
14.
Zurück zum Zitat A. Kisko, R.D.K. Misra, J. Talonen, and L.P. Karjalainen, The Influence of Grain Size on the Strain-Induced Martensite Formation in Tensile Straining of an Austenitic 15Cr-9Mn-Ni-Cu Stainless Steel, Mater. Sci. Eng. A, 2013, 578, p 408–416 A. Kisko, R.D.K. Misra, J. Talonen, and L.P. Karjalainen, The Influence of Grain Size on the Strain-Induced Martensite Formation in Tensile Straining of an Austenitic 15Cr-9Mn-Ni-Cu Stainless Steel, Mater. Sci. Eng. A, 2013, 578, p 408–416
15.
Zurück zum Zitat B. Ravi Kumar and S. Sharma, Recrystallization behavior of a heavily deformed austenitic stainless steel during iterative type annealing, Metall. Mater. Trans. A, 2014, 45, p 6027–6038 B. Ravi Kumar and S. Sharma, Recrystallization behavior of a heavily deformed austenitic stainless steel during iterative type annealing, Metall. Mater. Trans. A, 2014, 45, p 6027–6038
16.
Zurück zum Zitat L.F.M. Martins, R.L. Plaut, and A.F. Padilha, Effect of Carbon on the Cold-worked State and Annealing Behavior of Two 18wt% Cr-8wt% Ni Austenitic Stainless Steels, ISIJ Int., 1998, 38, p 572–579 L.F.M. Martins, R.L. Plaut, and A.F. Padilha, Effect of Carbon on the Cold-worked State and Annealing Behavior of Two 18wt% Cr-8wt% Ni Austenitic Stainless Steels, ISIJ Int., 1998, 38, p 572–579
17.
Zurück zum Zitat C.X. Huang, W.P. Hu, Q.Y. Wang, C. Wang, G. Yang, and Y.T. Zhu, An Ideal Ultrafine-Grained Structure for High Strength and High Ductility, Mater. Res. Lett., 2015, 3, p 88–94 C.X. Huang, W.P. Hu, Q.Y. Wang, C. Wang, G. Yang, and Y.T. Zhu, An Ideal Ultrafine-Grained Structure for High Strength and High Ductility, Mater. Res. Lett., 2015, 3, p 88–94
18.
Zurück zum Zitat J. Li, Y. Cao, B. Gao, Y. Li, and Y. Zhu, Superior Strength and Ductility of 316L Stainless Steel with Heterogeneous Lamella Structure, J. Mater. Sci., 2018, 53, p 10442–10456 J. Li, Y. Cao, B. Gao, Y. Li, and Y. Zhu, Superior Strength and Ductility of 316L Stainless Steel with Heterogeneous Lamella Structure, J. Mater. Sci., 2018, 53, p 10442–10456
19.
Zurück zum Zitat M. Shirdel, H. Mirzadeh, and M.H. Parsa, Nano/Ultrafine Grained Austenitic Stainless Steel Through the Formation and Reversion of Deformation-Induced Martensite: Mechanisms, Microstructures, Mechanical Properties, and TRIP Effect, Mater. Charact., 2015, 103, p 150–161 M. Shirdel, H. Mirzadeh, and M.H. Parsa, Nano/Ultrafine Grained Austenitic Stainless Steel Through the Formation and Reversion of Deformation-Induced Martensite: Mechanisms, Microstructures, Mechanical Properties, and TRIP Effect, Mater. Charact., 2015, 103, p 150–161
20.
Zurück zum Zitat J. Li, B. Gao, Z. Huang, H. Zhou, Q. Mao, and Y. Li, Design for Strength-Ductility Synergy of 316L Stainless Steel with Heterogeneous Lamella Structure Through Medium Cold Rolling and Annealing, Vacuum, 2018, 157, p 128–135 J. Li, B. Gao, Z. Huang, H. Zhou, Q. Mao, and Y. Li, Design for Strength-Ductility Synergy of 316L Stainless Steel with Heterogeneous Lamella Structure Through Medium Cold Rolling and Annealing, Vacuum, 2018, 157, p 128–135
21.
Zurück zum Zitat A. Di Schino, I. Salvatori, and J.M. Kenny, Effects of Martensite Formation and Austenite Reversion on Grain Refining of AISI, 304 Stainless Steel, J. Mater. Sci., 2002, 37, p 4561–4565 A. Di Schino, I. Salvatori, and J.M. Kenny, Effects of Martensite Formation and Austenite Reversion on Grain Refining of AISI, 304 Stainless Steel, J. Mater. Sci., 2002, 37, p 4561–4565
22.
Zurück zum Zitat S. Wang, J. Li, Y. Cao, B. Gao, Q. Mao, and Y. Li, Thermal Stability and Tensile Property of 316L Stainless Steel with Heterogeneous Lamella Structure, Vacuum, 2018, 152, p 261–264 S. Wang, J. Li, Y. Cao, B. Gao, Q. Mao, and Y. Li, Thermal Stability and Tensile Property of 316L Stainless Steel with Heterogeneous Lamella Structure, Vacuum, 2018, 152, p 261–264
23.
Zurück zum Zitat S. Kheiri, H. Mirzadeh, and M. Naghizadeh, Tailoring the Microstructure and Mechanical Properties of AISI, 316L Austenitic Stainless Steel Via Cold Rolling and Reversion Annealing, Mater. Sci. Eng. A, 2019, 759, p 90–96 S. Kheiri, H. Mirzadeh, and M. Naghizadeh, Tailoring the Microstructure and Mechanical Properties of AISI, 316L Austenitic Stainless Steel Via Cold Rolling and Reversion Annealing, Mater. Sci. Eng. A, 2019, 759, p 90–96
24.
Zurück zum Zitat K. Nohara, Y. Ono, and N. Ohashi, Composition and Grain Size Dependencies of Strain-Induced Martensitic Transformation in Metastable Austenitic Stainless Steels, Tetsu-to-Hagané, 1977, 63, p 772–782 K. Nohara, Y. Ono, and N. Ohashi, Composition and Grain Size Dependencies of Strain-Induced Martensitic Transformation in Metastable Austenitic Stainless Steels, Tetsu-to-Hagané, 1977, 63, p 772–782
25.
Zurück zum Zitat V. Shrinivas, S.K. Varma, and L. Murr, Deformation-Induced Martensitic Characteristics in 304 and 316 Stainless Steels during Room-Temperature Rolling, Metall. Mater. Trans. A, 1995, 26, p 661–671 V. Shrinivas, S.K. Varma, and L. Murr, Deformation-Induced Martensitic Characteristics in 304 and 316 Stainless Steels during Room-Temperature Rolling, Metall. Mater. Trans. A, 1995, 26, p 661–671
26.
Zurück zum Zitat S.K. Varma, J. Kalyanam, L.E. Murk, and V. Srinivas, Effect of Grain Size on Deformation-Induced Martensite Formation in 304 and 316 Stainless Steels during Room Temperature Tensile Testing, J. Mater. Sci. Lett., 1994, 13, p 107–111 S.K. Varma, J. Kalyanam, L.E. Murk, and V. Srinivas, Effect of Grain Size on Deformation-Induced Martensite Formation in 304 and 316 Stainless Steels during Room Temperature Tensile Testing, J. Mater. Sci. Lett., 1994, 13, p 107–111
27.
Zurück zum Zitat M. Naghizadeh and H. Mirzadeh, Effects of Grain Size on Mechanical Properties and Work-Hardening Behavior of AISI, 304 Austenitic Stainless Steel, Steel Res. Int., 2019, 90, p 1900153 M. Naghizadeh and H. Mirzadeh, Effects of Grain Size on Mechanical Properties and Work-Hardening Behavior of AISI, 304 Austenitic Stainless Steel, Steel Res. Int., 2019, 90, p 1900153
28.
Zurück zum Zitat T. Angel, Formation of Martensite in Austenitic Stainless Steels, J. Iron Steel Inst., 1954, 177, p 165–174 T. Angel, Formation of Martensite in Austenitic Stainless Steels, J. Iron Steel Inst., 1954, 177, p 165–174
29.
Zurück zum Zitat G.B. Olson and M. Cohen, Kinetics of Strain-Induced Martensitic Nucleation, Metall. Trans. A, 1975, 6, p 791–795 G.B. Olson and M. Cohen, Kinetics of Strain-Induced Martensitic Nucleation, Metall. Trans. A, 1975, 6, p 791–795
30.
Zurück zum Zitat X.F. Fang and W. Dahl, Strain Hardening and Transformation Mechanism of Deformation-Induced Martensite Transformation in Metastable Austenitic Stainless Steels, Mater. Sci. Eng. A, 1991, 141, p 189–198 X.F. Fang and W. Dahl, Strain Hardening and Transformation Mechanism of Deformation-Induced Martensite Transformation in Metastable Austenitic Stainless Steels, Mater. Sci. Eng. A, 1991, 141, p 189–198
31.
Zurück zum Zitat J. Talonen and H. Hänninen, Formation of Shear Bands and Strain-Induced Martensite during Plastic Deformation of Metastable Austenitic Stainless Steels, Acta Mater., 2007, 55, p 6108–6118 J. Talonen and H. Hänninen, Formation of Shear Bands and Strain-Induced Martensite during Plastic Deformation of Metastable Austenitic Stainless Steels, Acta Mater., 2007, 55, p 6108–6118
32.
Zurück zum Zitat L.E. Murr, K.P. Staudhammer, and S.S. Hecker, Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part II, Microstruct. Study Metall. Trans. A, 1982, 13, p 627–635 L.E. Murr, K.P. Staudhammer, and S.S. Hecker, Effects of Strain State and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part II, Microstruct. Study Metall. Trans. A, 1982, 13, p 627–635
33.
Zurück zum Zitat J. Talonen, H. Hänninen, P. Nenonen, and G. Pape, Effect of Strain Rate on the Strain-Induced γ → α′-Martensite Transformation and Mechanical Properties of Austenitic Stainless Steels, Metall. Mater. Trans. A, 2005, 36, p 421–432 J. Talonen, H. Hänninen, P. Nenonen, and G. Pape, Effect of Strain Rate on the Strain-Induced γ → α′-Martensite Transformation and Mechanical Properties of Austenitic Stainless Steels, Metall. Mater. Trans. A, 2005, 36, p 421–432
34.
Zurück zum Zitat S. Acharya, A. Moitra, S. Bysakh, M. Nanibabu, S.A. Krishanan, C.K. Mukhopadhyay, K.V. Rajkumar, G. Sasikala, A. Mukhopadhyay, D.K. Mondal, K.S. Ghosh, B.B. Jha, and K. Muraleedharan, Effect of High Strain Rate Deformation on the Properties of SS304L and SS316LN Alloys, Mech. Mater., 2019, 136, p 103073 S. Acharya, A. Moitra, S. Bysakh, M. Nanibabu, S.A. Krishanan, C.K. Mukhopadhyay, K.V. Rajkumar, G. Sasikala, A. Mukhopadhyay, D.K. Mondal, K.S. Ghosh, B.B. Jha, and K. Muraleedharan, Effect of High Strain Rate Deformation on the Properties of SS304L and SS316LN Alloys, Mech. Mater., 2019, 136, p 103073
35.
Zurück zum Zitat A. Das, S. Sivaprasad, M. Ghosh, P.C. Chakraborti, and S. Tarafder, Morphologies and Characteristics of Deformation Induced Martensite during Tensile Deformation of 304 LN Stainless Steel, Mater. Sci. Eng. A, 2008, 486, p 283–286 A. Das, S. Sivaprasad, M. Ghosh, P.C. Chakraborti, and S. Tarafder, Morphologies and Characteristics of Deformation Induced Martensite during Tensile Deformation of 304 LN Stainless Steel, Mater. Sci. Eng. A, 2008, 486, p 283–286
36.
Zurück zum Zitat T. Iwamoto, T. Tsuta, and Y. Tomita, Investigation on Deformation Mode Dependence of Strain-Induced Martensitic Transformation in TRIP Steels and Modelling of Transformation Kinetics, Int. J. Mech. Sci., 1998, 40, p 173–182 T. Iwamoto, T. Tsuta, and Y. Tomita, Investigation on Deformation Mode Dependence of Strain-Induced Martensitic Transformation in TRIP Steels and Modelling of Transformation Kinetics, Int. J. Mech. Sci., 1998, 40, p 173–182
37.
Zurück zum Zitat E.S. Perdahcıoğlu, H.J.M. Geijselaers, and J. Huetink, Influence of Stress State and Strain Path on Deformation Induced Martensitic Transformations, Mater. Sci. Eng. A, 2008, 481, p 727–731 E.S. Perdahcıoğlu, H.J.M. Geijselaers, and J. Huetink, Influence of Stress State and Strain Path on Deformation Induced Martensitic Transformations, Mater. Sci. Eng. A, 2008, 481, p 727–731
38.
Zurück zum Zitat M. Mansourinejad and M. Ketabchi, Influence of Strain State on the Kinetics of Martensitic Transformation Induced Plasticity (TRIP) in AISI, 304 Stainless Steel, Steel Res. Int., 2018, 89, p 1700359 M. Mansourinejad and M. Ketabchi, Influence of Strain State on the Kinetics of Martensitic Transformation Induced Plasticity (TRIP) in AISI, 304 Stainless Steel, Steel Res. Int., 2018, 89, p 1700359
39.
Zurück zum Zitat M. Naghizadeh and H. Mirzadeh, Microstructural Evolutions during Reversion Annealing of Cold-Rolled AISI, 316 Austenitic Stainless Steel, Metall. Mater. Trans. A, 2018, 49, p 2248–2256 M. Naghizadeh and H. Mirzadeh, Microstructural Evolutions during Reversion Annealing of Cold-Rolled AISI, 316 Austenitic Stainless Steel, Metall. Mater. Trans. A, 2018, 49, p 2248–2256
40.
Zurück zum Zitat M. Odnobokova, A. Belyakov, A. Kipelova, and R. Kaibyshev, Formation of Ultrafine-Grained Structures in 304L and 316L Stainless Steels by Recrystallization and Reverse Phase Transformation, Mater. Sci. Forum, 2016, 838–839, p 410–415 M. Odnobokova, A. Belyakov, A. Kipelova, and R. Kaibyshev, Formation of Ultrafine-Grained Structures in 304L and 316L Stainless Steels by Recrystallization and Reverse Phase Transformation, Mater. Sci. Forum, 2016, 838–839, p 410–415
41.
Zurück zum Zitat K. Tomimura, S. Takaki, and Y. Tokunaga, Reversion Mechanism from Deformation Induced Martensite to Austenite in Metastable Austenitic Stainless Steels, ISIJ Int., 1991, 31, p 1431–1437 K. Tomimura, S. Takaki, and Y. Tokunaga, Reversion Mechanism from Deformation Induced Martensite to Austenite in Metastable Austenitic Stainless Steels, ISIJ Int., 1991, 31, p 1431–1437
42.
Zurück zum Zitat S. Takaki, K. Tomimura, and S. Ueda, Effect of Pre-cold-working on Diffusional Reversion of Deformation Induced Martensite in Metastable Austenitic Stainless Steel, ISIJ Int., 1994, 34, p 522–527 S. Takaki, K. Tomimura, and S. Ueda, Effect of Pre-cold-working on Diffusional Reversion of Deformation Induced Martensite in Metastable Austenitic Stainless Steel, ISIJ Int., 1994, 34, p 522–527
43.
Zurück zum Zitat A.S. Hamada, A.P. Kisko, P. Sahu, and L.P. Karjalainen, Enhancement of Mechanical Properties of a TRIP-Aided Austenitic Stainless Steel by Controlled Reversion Annealing, Mater. Sci. Eng. A, 2015, 628, p 154–159 A.S. Hamada, A.P. Kisko, P. Sahu, and L.P. Karjalainen, Enhancement of Mechanical Properties of a TRIP-Aided Austenitic Stainless Steel by Controlled Reversion Annealing, Mater. Sci. Eng. A, 2015, 628, p 154–159
44.
Zurück zum Zitat M. Naghizadeh and H. Mirzadeh, Microstructural Evolutions during Annealing of Plastically Deformed AISI, 304 Austenitic Stainless Steel: Martensite Reversion, Grain Refinement, Recrystallization, and Grain Growth, Metall. Mater Trans. A, 2016, 47, p 4210–4216 M. Naghizadeh and H. Mirzadeh, Microstructural Evolutions during Annealing of Plastically Deformed AISI, 304 Austenitic Stainless Steel: Martensite Reversion, Grain Refinement, Recrystallization, and Grain Growth, Metall. Mater Trans. A, 2016, 47, p 4210–4216
45.
Zurück zum Zitat W.B. Qin, J.S. Li, and Y.S. Li, Effects of Grain Size on Tensile Property and Fracture Morphology of 316L Stainless Steel, Mater. Lett., 2019, 254, p 116–119 W.B. Qin, J.S. Li, and Y.S. Li, Effects of Grain Size on Tensile Property and Fracture Morphology of 316L Stainless Steel, Mater. Lett., 2019, 254, p 116–119
46.
Zurück zum Zitat W. Bleck, X. Guo, and Y. Ma, The TRIP Effect and Its Application in Cold Formable Sheet Steels, Steel Res. Int., 2017, 88, p 1700218 W. Bleck, X. Guo, and Y. Ma, The TRIP Effect and Its Application in Cold Formable Sheet Steels, Steel Res. Int., 2017, 88, p 1700218
47.
Zurück zum Zitat C. Lei, X. Deng, X. Li, Z. Wang, G. Wang, and R.D.K. Misra, Mechanical Properties and Strain Hardening Behavior of Phase Reversion-Induced Nano/Ultrafine Fe-17Cr-6Ni Austenitic Structure Steel, J. Alloys Compd., 2016, 689, p 718–725 C. Lei, X. Deng, X. Li, Z. Wang, G. Wang, and R.D.K. Misra, Mechanical Properties and Strain Hardening Behavior of Phase Reversion-Induced Nano/Ultrafine Fe-17Cr-6Ni Austenitic Structure Steel, J. Alloys Compd., 2016, 689, p 718–725
48.
Zurück zum Zitat Y. Matsuoka, T. Iwasaki, N. Nakada, T. Tsuchiyama, and S. Takaki, Effect of Grain Size on Thermal and Mechanical Stability of Austenite in Metastable Austenitic Stainless Steel, ISIJ Int., 2013, 53, p 1224–1230 Y. Matsuoka, T. Iwasaki, N. Nakada, T. Tsuchiyama, and S. Takaki, Effect of Grain Size on Thermal and Mechanical Stability of Austenite in Metastable Austenitic Stainless Steel, ISIJ Int., 2013, 53, p 1224–1230
49.
Zurück zum Zitat G. Cios, T. Tokarski, A. Żywczak, R. Dziurka, M. Stępień, M. Marciszko, B. Pawłowski, K. Wieczerzak, and P. Bała, The Investigation of Strain-Induced Martensite Reverse Transformation in AISI, 304 Austenitic Stainless Steel, Metall. Mater. Trans. A, 2017, 48, p 4999–5008 G. Cios, T. Tokarski, A. Żywczak, R. Dziurka, M. Stępień, M. Marciszko, B. Pawłowski, K. Wieczerzak, and P. Bała, The Investigation of Strain-Induced Martensite Reverse Transformation in AISI, 304 Austenitic Stainless Steel, Metall. Mater. Trans. A, 2017, 48, p 4999–5008
50.
Zurück zum Zitat A. Weiß, H. Gutte, and P.R. Scheller, Deformation Induced Martensite Formation and Its Effect on Transformation Induced Plasticity (TRIP), Steel Res. Int., 2006, 77, p 727–732 A. Weiß, H. Gutte, and P.R. Scheller, Deformation Induced Martensite Formation and Its Effect on Transformation Induced Plasticity (TRIP), Steel Res. Int., 2006, 77, p 727–732
51.
Zurück zum Zitat J. Talonen, Effect of Strain-Induced α’-Martensite Transformation on Mechanical Properties of Metastable Austenitic Stainless Steels, Doctoral Dissertation, Helsinki University of Technology, 2007 J. Talonen, Effect of Strain-Induced α’-Martensite Transformation on Mechanical Properties of Metastable Austenitic Stainless Steels, Doctoral Dissertation, Helsinki University of Technology, 2007
52.
Zurück zum Zitat M. Tavakoli, H. Mirzadeh, and M. Zamani, Ferrite Recrystallisation and Intercritical Annealing of Cold-Rolled Low Alloy Medium Carbon Steel, Mater. Sci. Technol., 2019, 35, p 1932–1941 M. Tavakoli, H. Mirzadeh, and M. Zamani, Ferrite Recrystallisation and Intercritical Annealing of Cold-Rolled Low Alloy Medium Carbon Steel, Mater. Sci. Technol., 2019, 35, p 1932–1941
53.
Zurück zum Zitat B. Fultz and J. Howe, Transmission Electron Microscopy and Diffractometry of Materials, 3rd ed., Springer, Berlin, 2008 B. Fultz and J. Howe, Transmission Electron Microscopy and Diffractometry of Materials, 3rd ed., Springer, Berlin, 2008
54.
Zurück zum Zitat B. Pourbahari, H. Mirzadeh, M. Emamy, and R. Roumina, Enhanced Ductility of a Fine-Grained Mg-Gd-Al-Zn Magnesium Alloy by Hot Extrusion, Adv. Eng. Mater., 2018, 20, p 1701171 B. Pourbahari, H. Mirzadeh, M. Emamy, and R. Roumina, Enhanced Ductility of a Fine-Grained Mg-Gd-Al-Zn Magnesium Alloy by Hot Extrusion, Adv. Eng. Mater., 2018, 20, p 1701171
55.
Zurück zum Zitat S. Saadatkia, H. Mirzadeh, and J.M. Cabrera, Hot Deformation Behavior, Dynamic Recrystallization, and Physically-Based Constitutive Modeling of Plain Carbon Steels, Mater. Sci. Eng. A, 2015, 636, p 196–202 S. Saadatkia, H. Mirzadeh, and J.M. Cabrera, Hot Deformation Behavior, Dynamic Recrystallization, and Physically-Based Constitutive Modeling of Plain Carbon Steels, Mater. Sci. Eng. A, 2015, 636, p 196–202
56.
Zurück zum Zitat F. Najafkhani, H. Mirzadeh, and M. Zamani, Effect of Intercritical Annealing Conditions on Grain Growth Kinetics of Dual Phase Steel, Met. Mater. Int., 2019, 25, p 1039–1046 F. Najafkhani, H. Mirzadeh, and M. Zamani, Effect of Intercritical Annealing Conditions on Grain Growth Kinetics of Dual Phase Steel, Met. Mater. Int., 2019, 25, p 1039–1046
58.
Zurück zum Zitat M. Naghizadeh and H. Mirzadeh, Elucidating the Effect of Alloying Elements on the Behavior of Austenitic Stainless Steels at Elevated Temperatures, Metall. Mater. Trans. A, 2016, 47, p 5698–5703 M. Naghizadeh and H. Mirzadeh, Elucidating the Effect of Alloying Elements on the Behavior of Austenitic Stainless Steels at Elevated Temperatures, Metall. Mater. Trans. A, 2016, 47, p 5698–5703
59.
Zurück zum Zitat M.J. Sohrabi, H. Mirzadeh, and C. Dehghanian, Thermodynamics Basis of Saturation of Martensite Content during Reversion Annealing of Cold Rolled Metastable Austenitic Steel, Vacuum, 2020, 174, p 109220 M.J. Sohrabi, H. Mirzadeh, and C. Dehghanian, Thermodynamics Basis of Saturation of Martensite Content during Reversion Annealing of Cold Rolled Metastable Austenitic Steel, Vacuum, 2020, 174, p 109220
60.
Zurück zum Zitat M.C. Somani, P. Juntunen, L.P. Karjalainen, R.D.K. Misra, and A. Kyröläinen, Enhanced Mechanical Properties Through Reversion in Metastable Austenitic Stainless Steels, Metall. Mater. Trans. A, 2009, 40, p 729–744 M.C. Somani, P. Juntunen, L.P. Karjalainen, R.D.K. Misra, and A. Kyröläinen, Enhanced Mechanical Properties Through Reversion in Metastable Austenitic Stainless Steels, Metall. Mater. Trans. A, 2009, 40, p 729–744
61.
Zurück zum Zitat K. Tomimura, S. Takaki, and Y. Tokunaga, Process of Reversion and Mechanical Properties in Metastable Austenitic Stainless Steels Containing Molybdenum, Tetsu-to-Hagane, 1990, 76, p 1728–1735 K. Tomimura, S. Takaki, and Y. Tokunaga, Process of Reversion and Mechanical Properties in Metastable Austenitic Stainless Steels Containing Molybdenum, Tetsu-to-Hagane, 1990, 76, p 1728–1735
62.
Zurück zum Zitat Y.C. Lin, J. Huang, D.G. He, X.Y. Zhang, Q. Wu, L.H. Wang, C. Chen, and K.C. Zhou, Phase Transformation and Dynamic Recrystallization Behaviors in a Ti55511 Titanium Alloy during Hot Compression, J. Alloys Compd., 2019, 795, p 471–482 Y.C. Lin, J. Huang, D.G. He, X.Y. Zhang, Q. Wu, L.H. Wang, C. Chen, and K.C. Zhou, Phase Transformation and Dynamic Recrystallization Behaviors in a Ti55511 Titanium Alloy during Hot Compression, J. Alloys Compd., 2019, 795, p 471–482
63.
Zurück zum Zitat X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, and M. He, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy during Hot Deformation, Mater. Des., 2014, 57, p 568–577 X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, and M. He, Dynamic Recrystallization Behavior of a Typical Nickel-Based Superalloy during Hot Deformation, Mater. Des., 2014, 57, p 568–577
64.
Zurück zum Zitat Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, and L.T. Li, EBSD Study of a Hot Deformed Nickel-Based Superalloy, J. Alloys Compd., 2015, 640, p 101–113 Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, and L.T. Li, EBSD Study of a Hot Deformed Nickel-Based Superalloy, J. Alloys Compd., 2015, 640, p 101–113
65.
Zurück zum Zitat M.J. Zehetbauer and Y.T. Zhu, Bulk Nanostructured Materials, Wiley, New York, 2009 M.J. Zehetbauer and Y.T. Zhu, Bulk Nanostructured Materials, Wiley, New York, 2009
66.
Zurück zum Zitat I. Shakhova, V. Dudko, A. Belyakov, K. Tsuzaki, and R. Kaibyshev, Effect of Large Strain Cold Rolling and Subsequent Annealing on Microstructure and Mechanical Properties of an Austenitic Stainless Steel, Mater. Sci. Eng. A, 2012, 545, p 176–186 I. Shakhova, V. Dudko, A. Belyakov, K. Tsuzaki, and R. Kaibyshev, Effect of Large Strain Cold Rolling and Subsequent Annealing on Microstructure and Mechanical Properties of an Austenitic Stainless Steel, Mater. Sci. Eng. A, 2012, 545, p 176–186
67.
Zurück zum Zitat Y.F. Shen, N. Jia, Y.D. Wang, X. Sun, L. Zuo, and D. Raabe, Suppression of Twinning and Phase Transformation in an Ultrafine Grained 2 GPa Strong Metastable Austenitic Steel: Experiment and Simulation, Acta Mater., 2015, 97, p 305–315 Y.F. Shen, N. Jia, Y.D. Wang, X. Sun, L. Zuo, and D. Raabe, Suppression of Twinning and Phase Transformation in an Ultrafine Grained 2 GPa Strong Metastable Austenitic Steel: Experiment and Simulation, Acta Mater., 2015, 97, p 305–315
68.
Zurück zum Zitat B. Pourbahari, H. Mirzadeh, and M. Emamy, The Effects of Grain Refinement and Rare Earth Intermetallics on Mechanical Properties of As-Cast and Wrought Magnesium Alloys, J. Mater. Eng. Perform., 2018, 27, p 1327–1333 B. Pourbahari, H. Mirzadeh, and M. Emamy, The Effects of Grain Refinement and Rare Earth Intermetallics on Mechanical Properties of As-Cast and Wrought Magnesium Alloys, J. Mater. Eng. Perform., 2018, 27, p 1327–1333
69.
Zurück zum Zitat Y.C. Lin, D.X. Wen, M.S. Chen, Y.X. Liu, X.M. Chen, and X. Ma, Improved Dislocation Density-Based Models for Describing Hot Deformation Behaviors of a Ni-Based Superalloy, J. Mater. Res., 2016, 31, p 2415–2429 Y.C. Lin, D.X. Wen, M.S. Chen, Y.X. Liu, X.M. Chen, and X. Ma, Improved Dislocation Density-Based Models for Describing Hot Deformation Behaviors of a Ni-Based Superalloy, J. Mater. Res., 2016, 31, p 2415–2429
70.
Zurück zum Zitat H. Mirzadeh and A. Najafizadeh, Correlation between Processing Parameters and Strain-Induced Martensitic Transformation in Cold Worked AISI, 301 Stainless Steel, Mater. Charact., 2008, 59, p 1650–1654 H. Mirzadeh and A. Najafizadeh, Correlation between Processing Parameters and Strain-Induced Martensitic Transformation in Cold Worked AISI, 301 Stainless Steel, Mater. Charact., 2008, 59, p 1650–1654
71.
Zurück zum Zitat M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials, 2nd ed., Cambridge University Press, Cambridge, 2009 M.A. Meyers and K.K. Chawla, Mechanical Behavior of Materials, 2nd ed., Cambridge University Press, Cambridge, 2009
Metadaten
Titel
Significance of Martensite Reversion and Austenite Stability to the Mechanical Properties and Transformation-Induced Plasticity Effect of Austenitic Stainless Steels
verfasst von
Mohammad Javad Sohrabi
Hamed Mirzadeh
Changiz Dehghanian
Publikationsdatum
28.04.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04798-7

Weitere Artikel der Ausgabe 5/2020

Journal of Materials Engineering and Performance 5/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.