Skip to main content
Erschienen in: Cellulose 2/2014

01.04.2014 | Original Paper

Simulation of a cellulose fiber in ionic liquid suggests a synergistic approach to dissolution

verfasst von: Barmak Mostofian, Jeremy C. Smith, Xiaolin Cheng

Erschienen in: Cellulose | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ionic liquids dissolve cellulose in a more efficient and environmentally acceptable way than conventional methods in aqueous solution. An understanding of how ionic liquids act on cellulose is essential for improving pretreatment conditions and thus detailed knowledge of the interactions between the cations, anions and cellulose is necessary. Here, to explore ionic liquid effects, we perform all-atom molecular dynamics simulations of a cellulose microfibril in 1-butyl-3-methylimidazolium chloride and analyze site–site interactions and cation orientations at the solute–solvent interface. The results indicate that Cl anions predominantly interact with cellulose surface hydroxyl groups but with differences between chains of neighboring cellulose layers, referred to as center and origin chains; Cl binds to C3-hydroxyls on the origin chains but to C2- and C6-hydroxyls on the center chains, thus resulting in a distinct pattern along glucan chains of the hydrophilic fiber surfaces. In particular, Cl binding disrupts intrachain O3H–O5 hydrogen bonds on the origin chains but not those on the center chains. In contrast, Bmim+ cations stack preferentially on the hydrophobic cellulose surface, governed by non-polar interactions with cellulose. Complementary to the polar interactions between Cl and cellulose, the stacking interaction between solvent cation rings and cellulose pyranose rings can compensate the interaction between stacked cellulose layers, thus stabilizing detached cellulose chains. Moreover, a frequently occurring intercalation of Bmim+ on the hydrophilic surface is observed, which by separating cellulose layers can also potentially facilitate the initiation of fiber disintegration. The results provide a molecular description why ionic liquids are ideal cellulose solvents, the concerted action of anions and cations on the hydrophobic and hydrophilic surfaces being key to the efficient dissolution of the amphiphilic carbohydrate.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRef Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRef
Zurück zum Zitat Bellesia G, Chundawat S, Langan P, Dale B, Gnanakaran S (2011) Probing the early events associated with liquid ammonia pretreatment of native crystalline cellulose. J Phys Chem B 115:9782–9788CrossRef Bellesia G, Chundawat S, Langan P, Dale B, Gnanakaran S (2011) Probing the early events associated with liquid ammonia pretreatment of native crystalline cellulose. J Phys Chem B 115:9782–9788CrossRef
Zurück zum Zitat BeMiller JN, Whistler L (1996) Carbohydrates. In: Fennema OR (ed) Food chemistry, 3rd edn. CRC, New York, pp 157–224 BeMiller JN, Whistler L (1996) Carbohydrates. In: Fennema OR (ed) Food chemistry, 3rd edn. CRC, New York, pp 157–224
Zurück zum Zitat Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRef Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690CrossRef
Zurück zum Zitat Bergenstrahle M, Berglund L, Mazeau K (2007) Thermal response in crystalline Ibeta cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145CrossRef Bergenstrahle M, Berglund L, Mazeau K (2007) Thermal response in crystalline Ibeta cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145CrossRef
Zurück zum Zitat Bergenstrahle M, Wohlert J, Himmel M, Brady J (2010) Simulation studies of the insolubility of cellulose. Carbohydr Res 345:2060–2066CrossRef Bergenstrahle M, Wohlert J, Himmel M, Brady J (2010) Simulation studies of the insolubility of cellulose. Carbohydr Res 345:2060–2066CrossRef
Zurück zum Zitat Bhargava BL, Balasubramanian S (2007) Refined potential model for atomistic simulations of ionic liquid [bmim][PF6]. J Chem Phys 127:114510CrossRef Bhargava BL, Balasubramanian S (2007) Refined potential model for atomistic simulations of ionic liquid [bmim][PF6]. J Chem Phys 127:114510CrossRef
Zurück zum Zitat Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101CrossRef Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101CrossRef
Zurück zum Zitat Chen Y, Stipanovic A, Winter W, Wilson D, Kim Y-J (2007) Effect of digestion by pure cellulases on crystallinity and average chain length for bacterial and microcrystalline celluloses. Cellulose 14:283–293CrossRef Chen Y, Stipanovic A, Winter W, Wilson D, Kim Y-J (2007) Effect of digestion by pure cellulases on crystallinity and average chain length for bacterial and microcrystalline celluloses. Cellulose 14:283–293CrossRef
Zurück zum Zitat Cheng G, Varanasi P, Li C, Liu H, Melnichenko Y, Simmons B, Kent M, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12:933–941CrossRef Cheng G, Varanasi P, Li C, Liu H, Melnichenko Y, Simmons B, Kent M, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12:933–941CrossRef
Zurück zum Zitat Cho H, Gross A, Chu J-W (2011) Dissecting force interactions in cellulose deconstruction reveals the required solvent versatility for overcoming biomass recalcitrance. J Am Chem Soc 133:14033–14041CrossRef Cho H, Gross A, Chu J-W (2011) Dissecting force interactions in cellulose deconstruction reveals the required solvent versatility for overcoming biomass recalcitrance. J Am Chem Soc 133:14033–14041CrossRef
Zurück zum Zitat Chundawat S, Bellesia G, Uppugundla N, da Costa Sousa L, Gao D, Cheh A, Agarwal U, Bianchetti C, Phillips G, Langan P et al (2011) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133:11163–11174CrossRef Chundawat S, Bellesia G, Uppugundla N, da Costa Sousa L, Gao D, Cheh A, Agarwal U, Bianchetti C, Phillips G, Langan P et al (2011) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133:11163–11174CrossRef
Zurück zum Zitat Dadi A, Varanasi S, Schall C (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95:904–910CrossRef Dadi A, Varanasi S, Schall C (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95:904–910CrossRef
Zurück zum Zitat Dadi A, Schall C, Varanasi S (2007) Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl Biochem Biotechnol 137–140:407–421CrossRef Dadi A, Schall C, Varanasi S (2007) Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl Biochem Biotechnol 137–140:407–421CrossRef
Zurück zum Zitat Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N*log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRef Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N*log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRef
Zurück zum Zitat El Seoud O, Koschella A, Fidale L, Dorn S, Heinze T (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromolecules 8:2629–2647CrossRef El Seoud O, Koschella A, Fidale L, Dorn S, Heinze T (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromolecules 8:2629–2647CrossRef
Zurück zum Zitat Essmann U, Perera L, Berkowitz M, Darden T, Lee H, Pedersen L (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593CrossRef Essmann U, Perera L, Berkowitz M, Darden T, Lee H, Pedersen L (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593CrossRef
Zurück zum Zitat Fukaya Y, Hayashi K, Kim SS, Ohna H (2010) Design of polar ionic liquids to solubilize cellulose without heating. In: Liebert T, Heinze T, Edgar K (eds) Cellulose solvents: for analysis, shaping and chemical modification, vol 1033. ACS, Washington, pp 55–66 Fukaya Y, Hayashi K, Kim SS, Ohna H (2010) Design of polar ionic liquids to solubilize cellulose without heating. In: Liebert T, Heinze T, Edgar K (eds) Cellulose solvents: for analysis, shaping and chemical modification, vol 1033. ACS, Washington, pp 55–66
Zurück zum Zitat GAUSSIAN version 09 (2009) Wallingford, CT, Gaussian, Inc. GAUSSIAN version 09 (2009) Wallingford, CT, Gaussian, Inc.
Zurück zum Zitat Gericke M, Fardim P, Heinze T (2012) Ionic liquids–promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502CrossRef Gericke M, Fardim P, Heinze T (2012) Ionic liquids–promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502CrossRef
Zurück zum Zitat Glasser WG, Atalla RH, Blackwell J, Brown RM Jr, Burchard W, French AD, Klemm DO, Nishiyama Y (2012) About the structure of cellulose: debating the Lindman Hypothesis. Cellulose 19:589–598CrossRef Glasser WG, Atalla RH, Blackwell J, Brown RM Jr, Burchard W, French AD, Klemm DO, Nishiyama Y (2012) About the structure of cellulose: debating the Lindman Hypothesis. Cellulose 19:589–598CrossRef
Zurück zum Zitat Gray-Weale A (2009) Correlations in the structure and dynamics of ionic liquids. Aust J Chem 62:288–297CrossRef Gray-Weale A (2009) Correlations in the structure and dynamics of ionic liquids. Aust J Chem 62:288–297CrossRef
Zurück zum Zitat Gross A, Chu J-W (2010) On the molecular origins of biomass recalcitrance: the interaction network and solvation structures of cellulose microfibrils. J Phys Chem B 114:13333–13341CrossRef Gross A, Chu J-W (2010) On the molecular origins of biomass recalcitrance: the interaction network and solvation structures of cellulose microfibrils. J Phys Chem B 114:13333–13341CrossRef
Zurück zum Zitat Gross A, Bell A, Chu J-W (2012) Entropy of cellulose dissolution in water and in the ionic liquid 1-butyl-3-methylimidazolim chloride. Phys Chem Chem Phys 14:8425–8430CrossRef Gross A, Bell A, Chu J-W (2012) Entropy of cellulose dissolution in water and in the ionic liquid 1-butyl-3-methylimidazolim chloride. Phys Chem Chem Phys 14:8425–8430CrossRef
Zurück zum Zitat Heinze T, Dorn S, Schöbitz M, Liebert T, Köhler S, Meister F (2008) Interactions of ionic liquids with polysaccharides-2: cellulose. Macromol Symp 262:8–22CrossRef Heinze T, Dorn S, Schöbitz M, Liebert T, Köhler S, Meister F (2008) Interactions of ionic liquids with polysaccharides-2: cellulose. Macromol Symp 262:8–22CrossRef
Zurück zum Zitat Hess B, Bekker H, Berendsen H, Fraaije J (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRef Hess B, Bekker H, Berendsen H, Fraaije J (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRef
Zurück zum Zitat Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRef Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRef
Zurück zum Zitat Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38 Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38
Zurück zum Zitat Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRef Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRef
Zurück zum Zitat Kim S-J, Dwiatmoko A, Choi J, Suh Y-W, Suh D, Oh M (2010) Cellulose pretreatment with 1-n-butyl-3-methylimidazolium chloride for solid acid-catalyzed hydrolysis. Bioresour Technol 101:8273–8279CrossRef Kim S-J, Dwiatmoko A, Choi J, Suh Y-W, Suh D, Oh M (2010) Cellulose pretreatment with 1-n-butyl-3-methylimidazolium chloride for solid acid-catalyzed hydrolysis. Bioresour Technol 101:8273–8279CrossRef
Zurück zum Zitat Kirschner K, Yongye A, Tschampel S, Gonzalez-Outeirino J, Daniels C, Foley L, Woods R (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 29:622–655CrossRef Kirschner K, Yongye A, Tschampel S, Gonzalez-Outeirino J, Daniels C, Foley L, Woods R (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 29:622–655CrossRef
Zurück zum Zitat Klein H, Cheng X, Smith J, Shen T (2011) Transfer matrix approach to the hydrogen-bonding in cellulose Iα fibrils describes the recalcitrance to thermal deconstruction. J Chem Phys 135:085106CrossRef Klein H, Cheng X, Smith J, Shen T (2011) Transfer matrix approach to the hydrogen-bonding in cellulose Iα fibrils describes the recalcitrance to thermal deconstruction. J Chem Phys 135:085106CrossRef
Zurück zum Zitat Kowsari MH, Alavi S, Ashrafizaadeh M, Najafi B (2008) Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient. J Chem Phys 129:224508CrossRef Kowsari MH, Alavi S, Ashrafizaadeh M, Najafi B (2008) Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient. J Chem Phys 129:224508CrossRef
Zurück zum Zitat Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121:9940–9946CrossRef Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121:9940–9946CrossRef
Zurück zum Zitat Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416CrossRef Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416CrossRef
Zurück zum Zitat Langan P, Gnanakaran S, Rector K, Pawley N, Fox D, Cho D, Hammel K (2011) Exploring new strategies for cellulosic biofuels production. Energy Environ Sci 4:3820–3833CrossRef Langan P, Gnanakaran S, Rector K, Pawley N, Fox D, Cho D, Hammel K (2011) Exploring new strategies for cellulosic biofuels production. Energy Environ Sci 4:3820–3833CrossRef
Zurück zum Zitat Li C, Knierim B, Manisseri C, Arora R, Scheller H, Auer M, Vogel K, Simmons B, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906CrossRef Li C, Knierim B, Manisseri C, Arora R, Scheller H, Auer M, Vogel K, Simmons B, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906CrossRef
Zurück zum Zitat Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81CrossRef Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81CrossRef
Zurück zum Zitat Liu L, Chen H (2006) Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM] Cl. Chin Sci Bull 51:2432–2436CrossRef Liu L, Chen H (2006) Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM] Cl. Chin Sci Bull 51:2432–2436CrossRef
Zurück zum Zitat Liu Z, Huang S, Wang W (2004) A refined force field for molecular simulation of imidazolium-based ionic liquids. J Phys Chem B 108:12978–12989CrossRef Liu Z, Huang S, Wang W (2004) A refined force field for molecular simulation of imidazolium-based ionic liquids. J Phys Chem B 108:12978–12989CrossRef
Zurück zum Zitat Liu C, Sun R, Zhang A, Li W (2010a) Dissolution of cellulose in ionic liquids and its application for cellulose processing and modification. In: Liebert T, Heinze T, Edgar K (eds) Cellulose solvents: for analysis, shaping and chemical modification, vol 1033. ACS, New York, pp 287–297 Liu C, Sun R, Zhang A, Li W (2010a) Dissolution of cellulose in ionic liquids and its application for cellulose processing and modification. In: Liebert T, Heinze T, Edgar K (eds) Cellulose solvents: for analysis, shaping and chemical modification, vol 1033. ACS, New York, pp 287–297
Zurück zum Zitat Liu H, Sale K, Holmes B, Simmons B, Singh S (2010b) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114:4293–4301CrossRef Liu H, Sale K, Holmes B, Simmons B, Singh S (2010b) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114:4293–4301CrossRef
Zurück zum Zitat Liu H, Sale K, Simmons B, Singh S (2011) Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water. J Phys Chem B 115:10251–10258CrossRef Liu H, Sale K, Simmons B, Singh S (2011) Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water. J Phys Chem B 115:10251–10258CrossRef
Zurück zum Zitat Lucas M, Wagner G, Nishiyama Y, Hanson L, Samayam I, Schall C, Langan P, Rector K (2011) Reversible swelling of the cell wall of poplar biomass by ionic liquid at room temperature. Bioresour Technol 102:4518–4523CrossRef Lucas M, Wagner G, Nishiyama Y, Hanson L, Samayam I, Schall C, Langan P, Rector K (2011) Reversible swelling of the cell wall of poplar biomass by ionic liquid at room temperature. Bioresour Technol 102:4518–4523CrossRef
Zurück zum Zitat Margulis CJ, Stern HA, Berne BJ (2002) Computer simulation of a “Green Chemistry” Room-temperature ionic solvent. J Phys Chem B 106:12017–12021CrossRef Margulis CJ, Stern HA, Berne BJ (2002) Computer simulation of a “Green Chemistry” Room-temperature ionic solvent. J Phys Chem B 106:12017–12021CrossRef
Zurück zum Zitat MATLAB version 7.12.0 (2011) Natick, Massachusetts: The MathWorks Inc. MATLAB version 7.12.0 (2011) Natick, Massachusetts: The MathWorks Inc.
Zurück zum Zitat Matthews J, Skopec C, Mason P, Zuccato P, Torget R, Sugiyama J, Himmel M, Brady J (2006) Computer simulation studies of microcrystalline cellulose Iß. Carbohydr Res 341:138–152CrossRef Matthews J, Skopec C, Mason P, Zuccato P, Torget R, Sugiyama J, Himmel M, Brady J (2006) Computer simulation studies of microcrystalline cellulose Iß. Carbohydr Res 341:138–152CrossRef
Zurück zum Zitat Matthews J, Himmel M, Brady J (2010) Simulations of the structure of cellulose. In: Nimlos MR, Crowley MF (eds) Computational modeling in lignocellulosic biofuel production, vol 1052. ACS Symposium Series, pp 17–53 Matthews J, Himmel M, Brady J (2010) Simulations of the structure of cellulose. In: Nimlos MR, Crowley MF (eds) Computational modeling in lignocellulosic biofuel production, vol 1052. ACS Symposium Series, pp 17–53
Zurück zum Zitat Matthews J, Bergenstrahle M, Beckham G, Himmel M, Nimlos M, Brady J, Crowley M (2011) High-temperature behavior of cellulose I. J Phys Chem B 115:2155–2166CrossRef Matthews J, Bergenstrahle M, Beckham G, Himmel M, Nimlos M, Brady J, Crowley M (2011) High-temperature behavior of cellulose I. J Phys Chem B 115:2155–2166CrossRef
Zurück zum Zitat Medronho B, Romano A, Miguel M, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587CrossRef Medronho B, Romano A, Miguel M, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587CrossRef
Zurück zum Zitat Mostofian B, Smith JC, Cheng X (2011) The solvation structures of cellulose microfibrils in ionic liquids. Interdiscip Sci Comput Life Sci 3:308–320CrossRef Mostofian B, Smith JC, Cheng X (2011) The solvation structures of cellulose microfibrils in ionic liquids. Interdiscip Sci Comput Life Sci 3:308–320CrossRef
Zurück zum Zitat Moulthrop J, Swatloski R, Moyna G, Rogers R (2005) High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun 12:1557–1559 Moulthrop J, Swatloski R, Moyna G, Rogers R (2005) High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun 12:1557–1559
Zurück zum Zitat Muldoon M, Gordon C, Dunkin I (2001) Investigations of solvent-solute interactions in room temperature ionic liquids using solvatochromic dyes. J Chem Soc Perkin Trans 2:433–435CrossRef Muldoon M, Gordon C, Dunkin I (2001) Investigations of solvent-solute interactions in room temperature ionic liquids using solvatochromic dyes. J Chem Soc Perkin Trans 2:433–435CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iß from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iß from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef
Zurück zum Zitat Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRef Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRef
Zurück zum Zitat Ohira K, Abe Y, Kawatsura M, Suzuki K, Mizuno M, Amano Y, Itoh T (2012) Design of cellulose dissolving ionic liquids inspired by nature. ChemSusChem 5:388–391CrossRef Ohira K, Abe Y, Kawatsura M, Suzuki K, Mizuno M, Amano Y, Itoh T (2012) Design of cellulose dissolving ionic liquids inspired by nature. ChemSusChem 5:388–391CrossRef
Zurück zum Zitat Raju SG, Balasubramanian S (2010) Role of cation symmetry in intermolecular structure and dynamics of room temperature ionic liquids: simulation studies. J Phys Chem B 114:6455–6463CrossRef Raju SG, Balasubramanian S (2010) Role of cation symmetry in intermolecular structure and dynamics of room temperature ionic liquids: simulation studies. J Phys Chem B 114:6455–6463CrossRef
Zurück zum Zitat Ramadugu S, Chung Y-H, Xia J, Margulis C (2009) When sugars get wet. A comprehensive study of the behavior of water on the surface of oligosaccharides. J Phys Chem B 113:11003–11015CrossRef Ramadugu S, Chung Y-H, Xia J, Margulis C (2009) When sugars get wet. A comprehensive study of the behavior of water on the surface of oligosaccharides. J Phys Chem B 113:11003–11015CrossRef
Zurück zum Zitat Reichardt C (2005) Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chem 7:339–351CrossRef Reichardt C (2005) Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chem 7:339–351CrossRef
Zurück zum Zitat Rinaldi R, Palkovits R, Schüth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed 47:8047–8050CrossRef Rinaldi R, Palkovits R, Schüth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed 47:8047–8050CrossRef
Zurück zum Zitat Samayam I, Hanson L, Langan P, Schall C (2011) Ionic-liquid induced changes in cellulose structure associated with enhanced biomass hydrolysis. Biomacromolecules 12:3091–3098CrossRef Samayam I, Hanson L, Langan P, Schall C (2011) Ionic-liquid induced changes in cellulose structure associated with enhanced biomass hydrolysis. Biomacromolecules 12:3091–3098CrossRef
Zurück zum Zitat Sellin M, Ondruschka B, Stark A (2010) Hydrogen bond acceptor properties of ionic liquids and their effect on cellulose solubility. In: Liebert T, Heinze T, Edgar K (eds) Cellulose solvents: for analysis, shaping and chemical modification, vol 1033. ACS, New York, pp 121–135 Sellin M, Ondruschka B, Stark A (2010) Hydrogen bond acceptor properties of ionic liquids and their effect on cellulose solubility. In: Liebert T, Heinze T, Edgar K (eds) Cellulose solvents: for analysis, shaping and chemical modification, vol 1033. ACS, New York, pp 121–135
Zurück zum Zitat Shen T, Gnanakaran S (2009) The stability of cellulose: a statistical perspective from a coarse-grained model of hydrogen-bond networks. Biophys J 96:3032–3040CrossRef Shen T, Gnanakaran S (2009) The stability of cellulose: a statistical perspective from a coarse-grained model of hydrogen-bond networks. Biophys J 96:3032–3040CrossRef
Zurück zum Zitat Sun N, Rodriguez H, Rahman M, Rogers R (2011) Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem Commun 47:1405–1421CrossRef Sun N, Rodriguez H, Rahman M, Rogers R (2011) Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem Commun 47:1405–1421CrossRef
Zurück zum Zitat Swatloski R, Spear S, Holbrey J, Rogers R (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRef Swatloski R, Spear S, Holbrey J, Rogers R (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975CrossRef
Zurück zum Zitat Urahata S, Ribeiro M (2005) Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations. J Chem Phys 122:024511CrossRef Urahata S, Ribeiro M (2005) Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations. J Chem Phys 122:024511CrossRef
Zurück zum Zitat Wada M, Nishiyama Y, Bellesia G, Forsyth T, Gnanakaran S, Langan P (2011) Neutron crystallographic and molecular dynamics studies of the structure of ammonia-cellulose I: rearrangement of hydrogen bonding during the treatment of cellulose with ammonia. Cellulose 18:191–206CrossRef Wada M, Nishiyama Y, Bellesia G, Forsyth T, Gnanakaran S, Langan P (2011) Neutron crystallographic and molecular dynamics studies of the structure of ammonia-cellulose I: rearrangement of hydrogen bonding during the treatment of cellulose with ammonia. Cellulose 18:191–206CrossRef
Zurück zum Zitat Wang H, Gurau G, Rogers R (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537CrossRef Wang H, Gurau G, Rogers R (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537CrossRef
Zurück zum Zitat Youngs TGA, Hardacre C, Holbrey JD (2007) Glucose solvation by the ionic liquid 1,3-dimethylimidazolium chloride: a simulation study. J Phys Chem B 111:13765–13774CrossRef Youngs TGA, Hardacre C, Holbrey JD (2007) Glucose solvation by the ionic liquid 1,3-dimethylimidazolium chloride: a simulation study. J Phys Chem B 111:13765–13774CrossRef
Zurück zum Zitat Yui T, Nishimura S, Akiba S, Hayashi S (2006) Swelling behavior of the cellulose Iβ crystal models by molecular dynamics. Carbohydr Res 341:2521–2530CrossRef Yui T, Nishimura S, Akiba S, Hayashi S (2006) Swelling behavior of the cellulose Iβ crystal models by molecular dynamics. Carbohydr Res 341:2521–2530CrossRef
Zurück zum Zitat Zavrel M, Bross D, Funke M, Buechs J, Spiess A (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100:2580–2587CrossRef Zavrel M, Bross D, Funke M, Buechs J, Spiess A (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100:2580–2587CrossRef
Zurück zum Zitat Zhang Y, Chan J (2010) Sustainable chemistry: imidazolium salts in biomass conversion and CO2 fixation. Energy Environ Sci 3:408–417CrossRef Zhang Y, Chan J (2010) Sustainable chemistry: imidazolium salts in biomass conversion and CO2 fixation. Energy Environ Sci 3:408–417CrossRef
Zurück zum Zitat Zhang L, Ruan D, Gao S (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci B Polym Phys 40:1521–1529CrossRef Zhang L, Ruan D, Gao S (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci B Polym Phys 40:1521–1529CrossRef
Zurück zum Zitat Zhao Y, Liu X, Wang J, Zhang S (2012) Effects of cationic structure on cellulose dissolution in ionic liquids: a molecular dynamics study. ChemPhysChem 13:3126–3133CrossRef Zhao Y, Liu X, Wang J, Zhang S (2012) Effects of cationic structure on cellulose dissolution in ionic liquids: a molecular dynamics study. ChemPhysChem 13:3126–3133CrossRef
Zurück zum Zitat Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327CrossRef Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327CrossRef
Metadaten
Titel
Simulation of a cellulose fiber in ionic liquid suggests a synergistic approach to dissolution
verfasst von
Barmak Mostofian
Jeremy C. Smith
Xiaolin Cheng
Publikationsdatum
01.04.2014
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 2/2014
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-013-0018-0

Weitere Artikel der Ausgabe 2/2014

Cellulose 2/2014 Zur Ausgabe