Skip to main content
Erschienen in: Physics of Metals and Metallography 7/2021

01.07.2021 | STRENGTH AND PLASTICITY

Simulation of the Dynamics of Changing the Heat Resistance of Nickel Alloys by Machine Learning Methods

verfasst von: A. G. Tyagunov, D. A. Tarasov, O. B. Mil’der

Erschienen in: Physics of Metals and Metallography | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Data on the nature of changing the heat resistance of nickel alloys, which are used for making the most critical parts, is of great topicality for the design of gas turbine engines of high resource. A model of changing the heat resistance and an analytical expression that makes it possible to determine the thermal stability parameter for each alloy composition are obtained using the machine learning method. The long-term strength limit was estimated and extrapolated using the Larson–Miller temperature–time dependence. The adequacy of the obtained model is confirmed by the satisfactory convergence of the experimental and calculated results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. S. Avramenko, “Prediction of the long-term strength of heat resistance of nickel alloys by the method of basic diagrams,” Detali Aerokosmicheskikh Letatel’nykh Apparatov, No. 8, 26–28 (2005). D. S. Avramenko, “Prediction of the long-term strength of heat resistance of nickel alloys by the method of basic diagrams,” Detali Aerokosmicheskikh Letatel’nykh Apparatov, No. 8, 26–28 (2005).
2.
Zurück zum Zitat M. M. Krivenyuk, “ Long-term strength prediction of high-temperature nickel alloys,” Metall i Lit’e Ukrainy, Nos. 11–12, 20–25 (2009). M. M. Krivenyuk, “ Long-term strength prediction of high-temperature nickel alloys,” Metall i Lit’e Ukrainy, Nos. 11–12, 20–25 (2009).
3.
Zurück zum Zitat M. Morinaga, N. Yukawa, H. Adachi, and H. Ezaki, “New phacomp and its application to alloy design,” In Superalloys (The Minerals, Metals & Materials Society, 1984), pp. 523–532. M. Morinaga, N. Yukawa, H. Adachi, and H. Ezaki, “New phacomp and its application to alloy design,” In Superalloys (The Minerals, Metals & Materials Society, 1984), pp. 523–532.
4.
Zurück zum Zitat V. A. Logunov, Yu. N. Shmotin, I. A. Leshchenko, and R. Yu. Starkov, “Modeling and development of new heat-resistant alloys,” Dvigatel’, No. 5, 24–27 (2013). V. A. Logunov, Yu. N. Shmotin, I. A. Leshchenko, and R. Yu. Starkov, “Modeling and development of new heat-resistant alloys,” Dvigatel’, No. 5, 24–27 (2013).
5.
Zurück zum Zitat E. N. Kablov and N. V. Petrushin, “Computer-aided design of cast heat-resistant nickel alloys,” Casting Heat-Resistant Alloys. The Effect of S.T. Kishkin (Nauka, Moscow, 2006), pp. 56–78. E. N. Kablov and N. V. Petrushin, “Computer-aided design of cast heat-resistant nickel alloys,” Casting Heat-Resistant Alloys. The Effect of S.T. Kishkin (Nauka, Moscow, 2006), pp. 56–78.
6.
Zurück zum Zitat E. N. Kablov, “Physicochemical and technological features of production of high-temperature rhenium-containing alloys,” Moscow Univ. Chem. Bull. 60, 16–28 (2005). E. N. Kablov, “Physicochemical and technological features of production of high-temperature rhenium-containing alloys,” Moscow Univ. Chem. Bull. 60, 16–28 (2005).
7.
Zurück zum Zitat A. I. Samoilov, G. I. Morozova, and O. S. Afonicheva, “Analytical method for optimizing alloying of heat-resistant nickel alloys,” Materialoved., No. 2, 14 (2000). A. I. Samoilov, G. I. Morozova, and O. S. Afonicheva, “Analytical method for optimizing alloying of heat-resistant nickel alloys,” Materialoved., No. 2, 14 (2000).
8.
Zurück zum Zitat D. V. Danilov, A. V. Logunov, and Yu. N. Shmotin, “Methodological foundations of computer-aided design of heat-resistant nickel-based alloys Part I,” Tekhnol. Mater., No. 5, 3–10 (2014). D. V. Danilov, A. V. Logunov, and Yu. N. Shmotin, “Methodological foundations of computer-aided design of heat-resistant nickel-based alloys Part I,” Tekhnol. Mater., No. 5, 3–10 (2014).
9.
Zurück zum Zitat D. V. Danilov, A. V. Logunov, and Yu. N. Shmotin, “Methodological foundations of computer-aided design of heat-resistant nickel-based alloys Part II,” Tekhnol. Mater., No. 6, 3–10 (2014). D. V. Danilov, A. V. Logunov, and Yu. N. Shmotin, “Methodological foundations of computer-aided design of heat-resistant nickel-based alloys Part II,” Tekhnol. Mater., No. 6, 3–10 (2014).
10.
Zurück zum Zitat D. V. Danilov, A. V. Logunov, and Yu. N. Shmotin, “Methodological foundations of computer-aided design of heat-resistant nickel-based alloys Part III,” Tekhnol. Mater., No. 7, 3–11 (2014). D. V. Danilov, A. V. Logunov, and Yu. N. Shmotin, “Methodological foundations of computer-aided design of heat-resistant nickel-based alloys Part III,” Tekhnol. Mater., No. 7, 3–11 (2014).
11.
Zurück zum Zitat K. Firsk and P. W. Gustafson, “An assessment of the Cr–Mo-system”, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 12, 247–254 (1988).CrossRef K. Firsk and P. W. Gustafson, “An assessment of the Cr–Mo-system”, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 12, 247–254 (1988).CrossRef
12.
Zurück zum Zitat S. H. Zhou, Y. Wang, L. Q. Chen, Z. K. Liu, and R. E. Napolitano, “Solution-based thermodynamic modeling of the Ni–Ta and NiMo–Ta systems using first-principle calculation,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 33, 631–641 (2009).CrossRef S. H. Zhou, Y. Wang, L. Q. Chen, Z. K. Liu, and R. E. Napolitano, “Solution-based thermodynamic modeling of the Ni–Ta and NiMo–Ta systems using first-principle calculation,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 33, 631–641 (2009).CrossRef
13.
Zurück zum Zitat L. Pauling, The Nature of the Chemical Bond (Cornell University, 1960. L. Pauling, The Nature of the Chemical Bond (Cornell University, 1960.
14.
Zurück zum Zitat S. T. Kishkin and E. N. Kablov, Casting Heat-Resistant Alloys for Turbine Blades. Aviation Materials. Fav. Tr. Viam (Anniversary Collection) (MISiS, VIAM, 2002), pp. 48–58 [in Russian]. S. T. Kishkin and E. N. Kablov, Casting Heat-Resistant Alloys for Turbine Blades. Aviation Materials. Fav. Tr. Viam (Anniversary Collection) (MISiS, VIAM, 2002), pp. 48–58 [in Russian].
15.
Zurück zum Zitat S. Walston, A. Cetel, Kay, R. Mac, K. O’Hara. et al., “Joint development of a fourth generation single crystal superalloy,” in Supralloy (Minerals, Metals & Materials Society, 2004), pp. 15–24. S. Walston, A. Cetel, Kay, R. Mac, K. O’Hara. et al., “Joint development of a fourth generation single crystal superalloy,” in Supralloy (Minerals, Metals & Materials Society, 2004), pp. 15–24.
16.
Zurück zum Zitat E. N. Kablov, V. N. Toloraya, and N. G. Orehov, “Single-crystal rhenium-bearing nickel alloys for turbine blades of GTE,” Metal Science and Heat Treatment. 44, 274–278 (2002). https://doi.org/10.1023/A:1021247602507 E. N. Kablov, V. N. Toloraya, and N. G. Orehov, “Single-crystal rhenium-bearing nickel alloys for turbine blades of GTE,” Metal Science and Heat Treatment. 44, 274–278 (2002). https://doi.org/10.1023/A:1021247602507
17.
Zurück zum Zitat S. V. Gaiduk, “Design foundry high-temperature corrosion resistant nickel alloy for the manufacture of turbine blades by the method of directed (mono) crystallization,” Structural and functional materials. New materials and technologies in metallurgy and mechanical engineering, No. 1 (2016) [in Russian]. S. V. Gaiduk, “Design foundry high-temperature corrosion resistant nickel alloy for the manufacture of turbine blades by the method of directed (mono) crystallization,” Structural and functional materials. New materials and technologies in metallurgy and mechanical engineering, No. 1 (2016) [in Russian].
18.
Zurück zum Zitat E. B. Argimbaeva, O. A. Bazyleva, and E. I. Turenko, “Intermetallic alloys based on Ni3Al,” All Materials. Encyclopedic Reference Book (2012), No. 5 [in Russian]. E. B. Argimbaeva, O. A. Bazyleva, and E. I. Turenko, “Intermetallic alloys based on Ni3Al,” All Materials. Encyclopedic Reference Book (2012), No. 5 [in Russian].
19.
Zurück zum Zitat E. N. Kablov, Casting Blades of Gas Turbine Engines. Alloys, Technology, Coatings (MISIS, Moscow, 2001) [in Russian]. E. N. Kablov, Casting Blades of Gas Turbine Engines. Alloys, Technology, Coatings (MISIS, Moscow, 2001) [in Russian].
20.
Zurück zum Zitat E. V. Baburina, Yu. M. Dolzhanskii, B. S. Lomberg, V. N. Chutkina, and V. V. Zorkina, “Structural stability of high-temperature nickel alloys and its improvement by optimal alloying,” Aviatsionnaya Prom-st., No. 5, 62–63 (1987). E. V. Baburina, Yu. M. Dolzhanskii, B. S. Lomberg, V. N. Chutkina, and V. V. Zorkina, “Structural stability of high-temperature nickel alloys and its improvement by optimal alloying,” Aviatsionnaya Prom-st., No. 5, 62–63 (1987).
21.
Zurück zum Zitat R. R. Larson and J. Miller, “Time-temperature relationship for rupture creep stress,” Trans ASME 74, No. 5, 765–775 (1952). R. R. Larson and J. Miller, “Time-temperature relationship for rupture creep stress,” Trans ASME 74, No. 5, 765–775 (1952).
22.
Zurück zum Zitat B. N. Sinayski, M. S. Belyaev, N. D. Zhukov, and A. D. Panteleev, “Temperature-time approach to approximation and extrapolation of characteristics of resistance of high-cycle nickel alloys to high-cycle fatigue”, Problemy Prochnosti, No. 3, 44–50 (1989) [in Russian]. B. N. Sinayski, M. S. Belyaev, N. D. Zhukov, and A. D. Panteleev, “Temperature-time approach to approximation and extrapolation of characteristics of resistance of high-cycle nickel alloys to high-cycle fatigue”, Problemy Prochnosti, No. 3, 44–50 (1989) [in Russian].
23.
Zurück zum Zitat S. O. Haykin, Neural Networks and Learning Machines, 3rd ed. (McMaster University, Ontario, 2009). S. O. Haykin, Neural Networks and Learning Machines, 3rd ed. (McMaster University, Ontario, 2009).
24.
Zurück zum Zitat Y. S. Yoo, I. S. Kim, D. H. Kim, C. Y. Jo, H. M. Kim, and C. N. Jone, “The application of neural network to the development of single crystal superalloys,” Superalloys, Ed. by K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. Reed, J. J. Schirra, and S. Walston (The Minerals, Metals & Materials Society, 2004). Y. S. Yoo, I. S. Kim, D. H. Kim, C. Y. Jo, H. M. Kim, and C. N. Jone, “The application of neural network to the development of single crystal superalloys,” Superalloys, Ed. by K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. Reed, J. J. Schirra, and S. Walston (The Minerals, Metals & Materials Society, 2004).
26.
Zurück zum Zitat O. S. Nurgayanova and A. A. Ganeev, “Mathematical modeling of the effect of alloying elements on the heat resistance of nickel alloys with a single crystal structure,” Vestnik UGATU 8 (4), 91–95 (2006). O. S. Nurgayanova and A. A. Ganeev, “Mathematical modeling of the effect of alloying elements on the heat resistance of nickel alloys with a single crystal structure,” Vestnik UGATU 8 (4), 91–95 (2006).
27.
Zurück zum Zitat O. S. Nurgayanova and A. A. Ganeev, “Computer-aided design of cast nickel superalloys with a single-crystal structure,” Polzunovskii Al’manakh, No. 3, 22–26 (2006). O. S. Nurgayanova and A. A. Ganeev, “Computer-aided design of cast nickel superalloys with a single-crystal structure,” Polzunovskii Al’manakh, No. 3, 22–26 (2006).
28.
Zurück zum Zitat O. S. Nurgayanova and A. A. Ganeev, “Neural network approaches to the design of new heat-resistant nickel casting alloys,” Neirokomp’yutery. Razrabotka, Primenenie, No. 10, 70–74 (2007). O. S. Nurgayanova and A. A. Ganeev, “Neural network approaches to the design of new heat-resistant nickel casting alloys,” Neirokomp’yutery. Razrabotka, Primenenie, No. 10, 70–74 (2007).
29.
Zurück zum Zitat O. S. Nurgayanova and A. A. Ganeev, “Synthesis of cast nickel superalloys for castings with directional and single-crystal structure,” Vestnik UGATU 9 (1), 160–169 (2007). O. S. Nurgayanova and A. A. Ganeev, “Synthesis of cast nickel superalloys for castings with directional and single-crystal structure,” Vestnik UGATU 9 (1), 160–169 (2007).
30.
Zurück zum Zitat S. Khaikin, Neural Networks: A Comprehensive Foundation (Vil’yams, Moscow, 2017). S. Khaikin, Neural Networks: A Comprehensive Foundation (Vil’yams, Moscow, 2017).
31.
Zurück zum Zitat N. Bano, A. Fahim, and M. Nganbe, “Modeling of thermal expansion coefficients of Ni based superalloys using artificial neural networks,” J. Mater. Eng. Perform. 22, 952–957 (2013).CrossRef N. Bano, A. Fahim, and M. Nganbe, “Modeling of thermal expansion coefficients of Ni based superalloys using artificial neural networks,” J. Mater. Eng. Perform. 22, 952–957 (2013).CrossRef
32.
Zurück zum Zitat N. Bano, A. Fahim, and M. Nganbe, “Neural network approach for modeling the hysteresis energy of Ni based superalloys,” Proceedings of the International Conference on Mechanical Engineering and Mechatronics (Ottawa, 2012). N. Bano, A. Fahim, and M. Nganbe, “Neural network approach for modeling the hysteresis energy of Ni based superalloys,” Proceedings of the International Conference on Mechanical Engineering and Mechatronics (Ottawa, 2012).
33.
Zurück zum Zitat N. Bano, A. Fahim, and M. Nganbe, “Neural network model to predict low cycle fatigue failure energy of rene77,” Proceedings of the AES-ATEMA’2010 Fifth International Conference (Montreal, 2010), pp. 123–126. N. Bano, A. Fahim, and M. Nganbe, “Neural network model to predict low cycle fatigue failure energy of rene77,” Proceedings of the AES-ATEMA’2010 Fifth International Conference (Montreal, 2010), pp. 123–126.
34.
Zurück zum Zitat N. Bano, A. Fahim, and M. Nganbe, “Fatigue crack initiation life prediction of IN738LC using artificial neural network,” Proceedings of the AES-ATEMA’2010 Fifth International Conferenc (Montreal, 2010), pp. 117–121. N. Bano, A. Fahim, and M. Nganbe, “Fatigue crack initiation life prediction of IN738LC using artificial neural network,” Proceedings of the AES-ATEMA’2010 Fifth International Conferenc (Montreal, 2010), pp. 117–121.
35.
Zurück zum Zitat N. Bano, A. Fahim, and M. Nganbe, “Determination of thermal expansion coefficient of IN738LC with duplex size gamma prime using neural network,” Proceedings of the Conference of Metallurgists (Winnipeg, 2008). N. Bano, A. Fahim, and M. Nganbe, “Determination of thermal expansion coefficient of IN738LC with duplex size gamma prime using neural network,” Proceedings of the Conference of Metallurgists (Winnipeg, 2008).
37.
Zurück zum Zitat S. Feng, H. Zhou, and H. Dong, “Using deep neural regularization of neural networks,” Artificial Neural Networks. Methods in Molecular Biology™, Ed. by D. J. Livingstone (HumanaPress, 2019). S. Feng, H. Zhou, and H. Dong, “Using deep neural regularization of neural networks,” Artificial Neural Networks. Methods in Molecular Biology™, Ed. by D. J. Livingstone (HumanaPress, 2019).
38.
Zurück zum Zitat B. N. Sinayski, M. S. Belyaev, and N. D. Zhukov, “Panteleev network with small dataset to predict material defects,” Mater. Des. 162, 300–310 (1989). B. N. Sinayski, M. S. Belyaev, and N. D. Zhukov, “Panteleev network with small dataset to predict material defects,” Mater. Des. 162, 300–310 (1989).
39.
Zurück zum Zitat F. Burden and D. Winkler, “Bayesian regularization of neural networks,” Artificial Neural Networks. Methods in Molecular Biology™, Ed. by D. J. Livingstone (Humana Press, 2008). F. Burden and D. Winkler, “Bayesian regularization of neural networks,” Artificial Neural Networks. Methods in Molecular Biology™, Ed. by D. J. Livingstone (Humana Press, 2008).
40.
Zurück zum Zitat O. S. Nurgayanova, “Application of artificial neural networks in the problems of classification of multicomponent alloys,” Information technology for intelligent decision support. (ITIDS'2018), Proc. VI All-Russian Conference (Ufa, 2018), pp. 21–26. O. S. Nurgayanova, “Application of artificial neural networks in the problems of classification of multicomponent alloys,” Information technology for intelligent decision support. (ITIDS'2018), Proc. VI All-Russian Conference (Ufa, 2018), pp. 21–26.
41.
Zurück zum Zitat O. S. Nurgayanova and A. A. Ganeev, “Computer-aided design system for casting nickel heat-resistant alloys with a single crystal structure,” Polzunovskii Al’manakh, No. 3, 22–26 (2006). O. S. Nurgayanova and A. A. Ganeev, “Computer-aided design system for casting nickel heat-resistant alloys with a single crystal structure,” Polzunovskii Al’manakh, No. 3, 22–26 (2006).
42.
Zurück zum Zitat E. N. Kablov, N. V. Petrushin, and E. S. Elyutin, “Single-crystal heatproof alloys for gas-turbine engines, Vestnik MGTU. Ser. Mashinostroenie, No. SP2, 38–52 (2011). E. N. Kablov, N. V. Petrushin, and E. S. Elyutin, “Single-crystal heatproof alloys for gas-turbine engines, Vestnik MGTU. Ser. Mashinostroenie, No. SP2, 38–52 (2011).
43.
Zurück zum Zitat X. R. Zhou, Y. S. Li, Z. L. Yan, C. W. Liu, and L. H. Zhu, “Kinetics of overlapping precipitation and particle size distribution of Ni3Al phase,” Phys. Met. Metallogr. 120, No. 4, 345–352 (2019).CrossRef X. R. Zhou, Y. S. Li, Z. L. Yan, C. W. Liu, and L. H. Zhu, “Kinetics of overlapping precipitation and particle size distribution of Ni3Al phase,” Phys. Met. Metallogr. 120, No. 4, 345–352 (2019).CrossRef
44.
Zurück zum Zitat A. G. Tyagunov, E. E. Baryshev, T. K. Kostina, B. A. Baum, V. P. Lesnikov, and I. P. Semenova, “The effect of long-term high-temperature heat treatment at 950°C on the structure and mechanical properties of the ZhS6U superalloy,” Phys. Met. Metallogr. 86, No. 1, 65–69 (1998). A. G. Tyagunov, E. E. Baryshev, T. K. Kostina, B. A. Baum, V. P. Lesnikov, and I. P. Semenova, “The effect of long-term high-temperature heat treatment at 950°C on the structure and mechanical properties of the ZhS6U superalloy,” Phys. Met. Metallogr. 86, No. 1, 65–69 (1998).
45.
Zurück zum Zitat V. P. Kuznetsov, V. P. Lesnikov, and N. A. Popov, Structure and Properties of Heat Resistant Nickel Alloys (Ural University, 2016). V. P. Kuznetsov, V. P. Lesnikov, and N. A. Popov, Structure and Properties of Heat Resistant Nickel Alloys (Ural University, 2016).
Metadaten
Titel
Simulation of the Dynamics of Changing the Heat Resistance of Nickel Alloys by Machine Learning Methods
verfasst von
A. G. Tyagunov
D. A. Tarasov
O. B. Mil’der
Publikationsdatum
01.07.2021
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 7/2021
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21070127

Weitere Artikel der Ausgabe 7/2021

Physics of Metals and Metallography 7/2021 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Model of Primary Recrystallization in Pure Copper

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Formation of an Ordered Structure in the Cu–50 at % Pd Alloy