Skip to main content
Erschienen in: Metal Science and Heat Treatment 11-12/2018

13.04.2018

Simulation of the Temperature, Microstructure and Mechanical Properties of Cold-Rolled Stainless Steel Sus430 During Continuous Annealing

verfasst von: Xiong Zhang, Zhi Wen

Erschienen in: Metal Science and Heat Treatment | Ausgabe 11-12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mathematical models of variation of the temperature, microstructure and mechanical properties of cold-rolled steel SUS340 in a continuous annealing furnace are derived using experimental results and numerical methods. The results obtained are used for computing the mechanical properties of SUS340 under continuous annealing and for developing new annealing modes with the help of the model suggested.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Yan, Stainless Steel: Handbook, Chemical Industry Press, Beijing (2009), p. 30. B. Yan, Stainless Steel: Handbook, Chemical Industry Press, Beijing (2009), p. 30.
2.
Zurück zum Zitat F. J. Humpgrey and M. Hatherly, Recrystallization and Related Annealing Phenomena, Oxford Press, London (2004), p. 2. F. J. Humpgrey and M. Hatherly, Recrystallization and Related Annealing Phenomena, Oxford Press, London (2004), p. 2.
3.
Zurück zum Zitat C. Herrera, N. B. Lima, and A. F. Filho, “Texture and mechanical properties evolution of a deep drawing medium carbon steel during cold rolling and subsequent recrystallization,” J. Mater. Proc. Tech., 209, 3524 (2009).CrossRef C. Herrera, N. B. Lima, and A. F. Filho, “Texture and mechanical properties evolution of a deep drawing medium carbon steel during cold rolling and subsequent recrystallization,” J. Mater. Proc. Tech., 209, 3524 (2009).CrossRef
4.
Zurück zum Zitat B. C.Wu, F. Shi, and X. Y. Cheng, “Effects of annealing temperature on microstructure, property and texture of 08Al coldrolled sheet,” Trans. Mater. Heat Treat. [in Chinese], 32(12), 61 (2011). B. C.Wu, F. Shi, and X. Y. Cheng, “Effects of annealing temperature on microstructure, property and texture of 08Al coldrolled sheet,” Trans. Mater. Heat Treat. [in Chinese], 32(12), 61 (2011).
5.
Zurück zum Zitat D. X. Su, W. C. Xu, and H. P. Li, “Influence factors analysis on the measurement of the plastic strain ratio r value of metallic sheets,” Part A Phys. Test [in Chinese], 42(3), 113 (2006). D. X. Su, W. C. Xu, and H. P. Li, “Influence factors analysis on the measurement of the plastic strain ratio r value of metallic sheets,” Part A Phys. Test [in Chinese], 42(3), 113 (2006).
6.
Zurück zum Zitat A. Belyakov and Y. Kimura, “Recovery and recrystallization in ferritic stainless steels after large strain deformation,” Mater. Sci. Eng. A, 403, 249 (2005).CrossRef A. Belyakov and Y. Kimura, “Recovery and recrystallization in ferritic stainless steels after large strain deformation,” Mater. Sci. Eng. A, 403, 249 (2005).CrossRef
7.
Zurück zum Zitat L. Yaping, A. D. Molodov, and G. Gunter, “Recrystallization kinetics and microstructure evolution during annealing of a cold-rolled Fe – Mn – C alloy,” Acta Mater., 59, 3229 (2011).CrossRef L. Yaping, A. D. Molodov, and G. Gunter, “Recrystallization kinetics and microstructure evolution during annealing of a cold-rolled Fe – Mn – C alloy,” Acta Mater., 59, 3229 (2011).CrossRef
8.
Zurück zum Zitat W. P. Ye, R. L. Gall, and G. Saindrenan, “A study of the recrystallization of an IF steel by kinetics models,” Mater. Sci. Eng. A, 332, 41 (2002).CrossRef W. P. Ye, R. L. Gall, and G. Saindrenan, “A study of the recrystallization of an IF steel by kinetics models,” Mater. Sci. Eng. A, 332, 41 (2002).CrossRef
9.
Zurück zum Zitat R. F. Dou, Z. Wen, and Q. Li, “Mathematical model based furnace temperature optimization strategy for continuous annealing furnace,” J. Zhejiang Univ. [in Chinese], 41(10), 1735 (2007). R. F. Dou, Z. Wen, and Q. Li, “Mathematical model based furnace temperature optimization strategy for continuous annealing furnace,” J. Zhejiang Univ. [in Chinese], 41(10), 1735 (2007).
10.
Zurück zum Zitat S. Strommer, M. Niederer, and A. Ssteinboeck, “A mathematical model of a direct-fired continuous strip annealing furnace,” Int. J. Heat Mass Trans., 69, 375 (2014).CrossRef S. Strommer, M. Niederer, and A. Ssteinboeck, “A mathematical model of a direct-fired continuous strip annealing furnace,” Int. J. Heat Mass Trans., 69, 375 (2014).CrossRef
11.
Zurück zum Zitat C. G. Spinola, J. M. Canero-Nieto, and C. J. Galvez-Fernandez, “Real-time supervision of annealing process in stainless steel production lines,” J. Metall. Eng., 3(1), 1 (2014). C. G. Spinola, J. M. Canero-Nieto, and C. J. Galvez-Fernandez, “Real-time supervision of annealing process in stainless steel production lines,” J. Metall. Eng., 3(1), 1 (2014).
12.
Zurück zum Zitat V. I. Lebedev and V. A. Sokolov, “Study of the convection components of complex heat exchange in a model of a direct-heating furnace,” Glass Ceram., 33, 352 (1976).CrossRef V. I. Lebedev and V. A. Sokolov, “Study of the convection components of complex heat exchange in a model of a direct-heating furnace,” Glass Ceram., 33, 352 (1976).CrossRef
13.
Zurück zum Zitat R. F. Dou and Z. Wen, Mathematical Model Based Furnace Temperature Optimization Strategy for Continuous Annealing Furnace, Metall. Industry Press, Beijing (2014), p. 120. R. F. Dou and Z. Wen, Mathematical Model Based Furnace Temperature Optimization Strategy for Continuous Annealing Furnace, Metall. Industry Press, Beijing (2014), p. 120.
14.
Zurück zum Zitat M. Holger, Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces: Advances in Heat Transfer, Academic Press, New York (1977), p. 40. M. Holger, Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces: Advances in Heat Transfer, Academic Press, New York (1977), p. 40.
15.
Zurück zum Zitat Z. Li, T. S. Wang, and X. J. Zhang, “Annealing softening behavior of cold-rolled low-carbon steel with a dual-phase structure and the resulting tensile properties,” Mater. Sci. Eng. A, 552, 204 (2012).CrossRef Z. Li, T. S. Wang, and X. J. Zhang, “Annealing softening behavior of cold-rolled low-carbon steel with a dual-phase structure and the resulting tensile properties,” Mater. Sci. Eng. A, 552, 204 (2012).CrossRef
16.
Zurück zum Zitat L. Brake, K. Verbeken, and L. Kestens, “Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel,” Acta Mater., 57, 1512 (2009).CrossRef L. Brake, K. Verbeken, and L. Kestens, “Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel,” Acta Mater., 57, 1512 (2009).CrossRef
17.
Zurück zum Zitat C. M. Sellars, “Modeling microstructural development during hot rolling,” Mater. Sci. Tech., 6, 1072 (1990).CrossRef C. M. Sellars, “Modeling microstructural development during hot rolling,” Mater. Sci. Tech., 6, 1072 (1990).CrossRef
18.
Zurück zum Zitat X. Zhang, Z. Wen, et al., “Evolution of microstructure and mechanical properties of cold-rolled SUS430 stainless steel during a continuous annealing process,” Mater. Sci. Eng. A, 598, 22 (2014).CrossRef X. Zhang, Z. Wen, et al., “Evolution of microstructure and mechanical properties of cold-rolled SUS430 stainless steel during a continuous annealing process,” Mater. Sci. Eng. A, 598, 22 (2014).CrossRef
19.
Zurück zum Zitat B. Pereda and J. M. Rodriguez, “Improved model of kinetics of strain induced precipitation and microstructure evolution of nbmicroalloyed steels during multipass rolling,” ISIJ Int., 48(7), 1457 (2008).CrossRef B. Pereda and J. M. Rodriguez, “Improved model of kinetics of strain induced precipitation and microstructure evolution of nbmicroalloyed steels during multipass rolling,” ISIJ Int., 48(7), 1457 (2008).CrossRef
20.
Zurück zum Zitat U. Rintaro, T. Nobuhiro, and M. Yoritoshi, “Effect of rolling reduction on ultrafine grained structure and mechanical properties of low-carbon steel thermomechanically processed from martensite starting structure,” Sci. Technol. Adv. Mater., 5, 153 (2004).CrossRef U. Rintaro, T. Nobuhiro, and M. Yoritoshi, “Effect of rolling reduction on ultrafine grained structure and mechanical properties of low-carbon steel thermomechanically processed from martensite starting structure,” Sci. Technol. Adv. Mater., 5, 153 (2004).CrossRef
Metadaten
Titel
Simulation of the Temperature, Microstructure and Mechanical Properties of Cold-Rolled Stainless Steel Sus430 During Continuous Annealing
verfasst von
Xiong Zhang
Zhi Wen
Publikationsdatum
13.04.2018
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 11-12/2018
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-018-0230-5

Weitere Artikel der Ausgabe 11-12/2018

Metal Science and Heat Treatment 11-12/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.