Skip to main content
Erschienen in: Journal of Materials Science 7/2020

22.10.2019 | Energy materials

Single-crystal LiNi0.5Co0.2Mn0.3O2: a high thermal and cycling stable cathodes for lithium-ion batteries

verfasst von: Zeqin Zhong, Lingzhen Chen, Shaozhen Huang, Weili Shang, Lingyong Kong, Ming Sun, Lei Chen, Wangbao Ren

Erschienen in: Journal of Materials Science | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Single-crystalline LiNi0.5Co0.2Mn0.3O2 (denoted as SC-523) with micron size had been successfully synthesized through a facile method. Electrochemical impedance spectroscopy and differential scanning calorimetry were carried out to identify the improved electrochemical performance and desired thermal stability. Even after 100 cycles, SC-523 still delivered a discharge capacity of 151.1 mA h g−1 (capacity retention with 90.3%) at 1 C in voltage range from 3.0 to 4.5 V (vs. Li/Li+), while polycrystalline spherical LiNi0.5Co0.2Mn0.3O2 (denoted as PC-523) only exhibited 141.7 mA h g−1 (capacity retention with 78.4%). Besides, SC-523 shows a higher decomposition temperature of 332.13 °C, 14.61 °C higher than that of PC-523 during the thermal decomposition. Consequently, single-crystalline particles with robust morphological integrity ensure the enhanced cycling stability and thermal stability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Belharouak I, Sun YK, Liu J, Amine K (2003) Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications. J Power Sources 123:247–252CrossRef Belharouak I, Sun YK, Liu J, Amine K (2003) Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications. J Power Sources 123:247–252CrossRef
2.
Zurück zum Zitat Kang KS, Meng YS, Breger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311:977–980CrossRef Kang KS, Meng YS, Breger J, Grey CP, Ceder G (2006) Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311:977–980CrossRef
3.
Zurück zum Zitat Liu C, Li F, Ma L-P, Cheng H-M (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62CrossRef Liu C, Li F, Ma L-P, Cheng H-M (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62CrossRef
4.
Zurück zum Zitat Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499CrossRef Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499CrossRef
5.
Zurück zum Zitat Kim J, Lee H, Cha H, Yoon M, Park M, Cho J (2018) Prospect and reality of Ni-rich cathode for commercialization. Adv Energy Mater 8:1702028–1702053CrossRef Kim J, Lee H, Cha H, Yoon M, Park M, Cho J (2018) Prospect and reality of Ni-rich cathode for commercialization. Adv Energy Mater 8:1702028–1702053CrossRef
6.
Zurück zum Zitat Liu H, Wolf M, Karki K, Yu Y-S, Stach EA, Cabana J, Chapman KW, Chupas PJ (2017) Intergranular cracking as a major cause of long-term capacity fading of layered cathodes. Nano Lett 17:3452–3457CrossRef Liu H, Wolf M, Karki K, Yu Y-S, Stach EA, Cabana J, Chapman KW, Chupas PJ (2017) Intergranular cracking as a major cause of long-term capacity fading of layered cathodes. Nano Lett 17:3452–3457CrossRef
7.
Zurück zum Zitat Jung S-K, Gwon H, Hong J, Park K-Y, Seo D-H, Kim H, Hyun J, Yang W, Kang K (2014) Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv Energy Mater 4:1300787–1300794CrossRef Jung S-K, Gwon H, Hong J, Park K-Y, Seo D-H, Kim H, Hyun J, Yang W, Kang K (2014) Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv Energy Mater 4:1300787–1300794CrossRef
8.
Zurück zum Zitat Watanabe S, Kinoshita M, Hosokawa T, Morigaki K, Nakura K (2014) Capacity fade of LiAlyNi1−x−yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1−x−yCoxO2 cathode after cycle tests in restricted depth of discharge ranges). J Power Sources 258:210–217CrossRef Watanabe S, Kinoshita M, Hosokawa T, Morigaki K, Nakura K (2014) Capacity fade of LiAlyNi1−x−yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1−x−yCoxO2 cathode after cycle tests in restricted depth of discharge ranges). J Power Sources 258:210–217CrossRef
9.
Zurück zum Zitat Li L, Zhang Z, Fu S, Liu Z, Liu Y (2018) Co-modification by LiAlO2-coating and Al-doping for LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium-ion batteries with a high cutoff voltage. J Alloy Compd 768:582–590CrossRef Li L, Zhang Z, Fu S, Liu Z, Liu Y (2018) Co-modification by LiAlO2-coating and Al-doping for LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium-ion batteries with a high cutoff voltage. J Alloy Compd 768:582–590CrossRef
10.
Zurück zum Zitat Liang C, Kong F, Longo RC, Zhang C, Nie Y, Zheng Y, Cho K (2017) Site-dependent multicomponent doping strategy for Ni-rich LiNi1−2yCoyMnyO2 (y = 1/12) cathode materials for Li-ion batteries. J Mater Chem A 5:25303–25313CrossRef Liang C, Kong F, Longo RC, Zhang C, Nie Y, Zheng Y, Cho K (2017) Site-dependent multicomponent doping strategy for Ni-rich LiNi1−2yCoyMnyO2 (y = 1/12) cathode materials for Li-ion batteries. J Mater Chem A 5:25303–25313CrossRef
11.
Zurück zum Zitat Hou P, Li F, Sun Y, Li H, Xu X, Zhai T (2018) Multishell precursors facilitated synthesis of concentration-gradient nickel-rich cathodes for long-life and high-rate lithium-ion batteries. ACS Appl Mater Interfaces 10:24508–24515CrossRef Hou P, Li F, Sun Y, Li H, Xu X, Zhai T (2018) Multishell precursors facilitated synthesis of concentration-gradient nickel-rich cathodes for long-life and high-rate lithium-ion batteries. ACS Appl Mater Interfaces 10:24508–24515CrossRef
12.
Zurück zum Zitat Kim U-H, Lee E-J, Yoon CS, Myung S-T, Sun Y-K (2016) Compositionally graded cathode material with long-term cycling stability for electric vehicles application. Adv Energy Mater 6:1601417–1601425CrossRef Kim U-H, Lee E-J, Yoon CS, Myung S-T, Sun Y-K (2016) Compositionally graded cathode material with long-term cycling stability for electric vehicles application. Adv Energy Mater 6:1601417–1601425CrossRef
13.
Zurück zum Zitat Shi J-L, Qi R, Zhang X-D, Wang P-F, Fu W-G, Yin Y-X, Xu J, Wan L-J, Guo Y-G (2017) High-thermal- and air-stability cathode material with concentration-gradient buffer for Li-ion batteries. ACS Appl Mater Interfaces 9:42829–42835CrossRef Shi J-L, Qi R, Zhang X-D, Wang P-F, Fu W-G, Yin Y-X, Xu J, Wan L-J, Guo Y-G (2017) High-thermal- and air-stability cathode material with concentration-gradient buffer for Li-ion batteries. ACS Appl Mater Interfaces 9:42829–42835CrossRef
14.
Zurück zum Zitat Shin M-R, Son J-T (2017) Optimization of PPy@LiNi0.6Co0.2Mn0.2O2 composite to achieve high electrochemical performance. J Nanosci Nanotechnol 17:8869–8874CrossRef Shin M-R, Son J-T (2017) Optimization of PPy@LiNi0.6Co0.2Mn0.2O2 composite to achieve high electrochemical performance. J Nanosci Nanotechnol 17:8869–8874CrossRef
15.
Zurück zum Zitat Qi H, Liang K, Guo W, Tian L, Wen X, Shi K, Zheng J (2017) Facile fabrication and low-cost coating of LiNi0.8Co0.15Al0.05O2 with enhanced electrochemical performance as cathode materials for lithium-ion batteries. Int J Electrochem Sci 12:5836–5844CrossRef Qi H, Liang K, Guo W, Tian L, Wen X, Shi K, Zheng J (2017) Facile fabrication and low-cost coating of LiNi0.8Co0.15Al0.05O2 with enhanced electrochemical performance as cathode materials for lithium-ion batteries. Int J Electrochem Sci 12:5836–5844CrossRef
16.
Zurück zum Zitat Yoo KS, Kang YH, Im KR, Kim C-S (2017) Surface modification of Li(Ni0.6Co0.2Mn0.2)O2 cathode materials by nano-Al2O3 to improve electrochemical performance in lithium-ion batteries. Materials 10:1273–1284CrossRef Yoo KS, Kang YH, Im KR, Kim C-S (2017) Surface modification of Li(Ni0.6Co0.2Mn0.2)O2 cathode materials by nano-Al2O3 to improve electrochemical performance in lithium-ion batteries. Materials 10:1273–1284CrossRef
17.
Zurück zum Zitat Wu Z, Ji S, Liu T, Duan Y, Xiao S, Lin Y, Xu K, Pan F (2016) Aligned Li + tunnels in core shell Li(NixMnyCoz)O2@LiFePO4 enhances its high voltage cycling stability as Li-ion battery cathode. Nano Lett 16:6357–6363CrossRef Wu Z, Ji S, Liu T, Duan Y, Xiao S, Lin Y, Xu K, Pan F (2016) Aligned Li + tunnels in core shell Li(NixMnyCoz)O2@LiFePO4 enhances its high voltage cycling stability as Li-ion battery cathode. Nano Lett 16:6357–6363CrossRef
18.
Zurück zum Zitat Li J, Cameron AR, Li HY, Glazier S, Xiong DJ, Chatzidakis M, Allen J, Botton GA, Dahn JR (2017) Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells. J Electrochem Soc 164:A1534–A1544CrossRef Li J, Cameron AR, Li HY, Glazier S, Xiong DJ, Chatzidakis M, Allen J, Botton GA, Dahn JR (2017) Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells. J Electrochem Soc 164:A1534–A1544CrossRef
19.
Zurück zum Zitat Habibi A, Jalaly M, Rahmanifard R, Ghorbanzadeh M (2018) Solution combustion synthesis of the nanocrystalline NCM oxide for lithium-ion battery uses. Mater Res Express 5:025506–025510CrossRef Habibi A, Jalaly M, Rahmanifard R, Ghorbanzadeh M (2018) Solution combustion synthesis of the nanocrystalline NCM oxide for lithium-ion battery uses. Mater Res Express 5:025506–025510CrossRef
20.
Zurück zum Zitat Huang Z-D, Liu X-M, Oh S-W, Zhang B, Ma P-C, Kim J-K (2011) Microscopically porous, interconnected single crystal LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J Mater Chem 21:10777–10784CrossRef Huang Z-D, Liu X-M, Oh S-W, Zhang B, Ma P-C, Kim J-K (2011) Microscopically porous, interconnected single crystal LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries. J Mater Chem 21:10777–10784CrossRef
21.
Zurück zum Zitat Wang H, Wei Y, Wang J, Long D (2018) Polymer-chelation synthesis of compositionally homogeneous LiNi1/3Co1/3Mn1/3O2 crystals for lithium-ion cathode. Electrochim Acta 269:724–732CrossRef Wang H, Wei Y, Wang J, Long D (2018) Polymer-chelation synthesis of compositionally homogeneous LiNi1/3Co1/3Mn1/3O2 crystals for lithium-ion cathode. Electrochim Acta 269:724–732CrossRef
22.
Zurück zum Zitat Wang L, Wu B, Mu D, Liu X, Peng Y, Xu H, Liu Q, Gai L, Wu F (2016) Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries. J Alloy Compd 674:360–367CrossRef Wang L, Wu B, Mu D, Liu X, Peng Y, Xu H, Liu Q, Gai L, Wu F (2016) Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries. J Alloy Compd 674:360–367CrossRef
23.
Zurück zum Zitat Zhou H-J, Cheng H-W, Zhao HB, Zhao KN, Zhao YF, Zhang JJ, Xu Q, Lu XG (2019) Superior stability and dynamic performance of single crystal LiNi1/3Co1/3Mn1/3O2 nanorods from beta-MnO2 template for lithium-ion batteries. J Electrochem Soc 166:A59–A67CrossRef Zhou H-J, Cheng H-W, Zhao HB, Zhao KN, Zhao YF, Zhang JJ, Xu Q, Lu XG (2019) Superior stability and dynamic performance of single crystal LiNi1/3Co1/3Mn1/3O2 nanorods from beta-MnO2 template for lithium-ion batteries. J Electrochem Soc 166:A59–A67CrossRef
24.
Zurück zum Zitat Han X, Meng Q, Sun T, Sun J (2010) Preparation and electrochemical characterization of single-crystalline spherical LiNi1/3Co1/3Mn1/3O2 powders cathode material for Li-ion batteries. J Power Sources 195:3047–3052CrossRef Han X, Meng Q, Sun T, Sun J (2010) Preparation and electrochemical characterization of single-crystalline spherical LiNi1/3Co1/3Mn1/3O2 powders cathode material for Li-ion batteries. J Power Sources 195:3047–3052CrossRef
25.
Zurück zum Zitat Kimijima T, Zettsu N, Teshima K (2016) Growth manner of octahedral-shaped Li(Ni1/3Co1/3Mn1/3)O2 single crystals in molten Na2SO4. Cryst Growth Des 16:2618–2623CrossRef Kimijima T, Zettsu N, Teshima K (2016) Growth manner of octahedral-shaped Li(Ni1/3Co1/3Mn1/3)O2 single crystals in molten Na2SO4. Cryst Growth Des 16:2618–2623CrossRef
26.
Zurück zum Zitat Kimijima T, Zettsu N, Yubuta K, Hirata K, Kami K, Teshima K (2016) Molybdate flux growth of idiomorphic Li(Ni1/3Co1/3Mn1/3)O2 single crystals and characterization of their capabilities as cathode materials for lithium-ion batteries. J Mater Chem A 4:7289–7296CrossRef Kimijima T, Zettsu N, Yubuta K, Hirata K, Kami K, Teshima K (2016) Molybdate flux growth of idiomorphic Li(Ni1/3Co1/3Mn1/3)O2 single crystals and characterization of their capabilities as cathode materials for lithium-ion batteries. J Mater Chem A 4:7289–7296CrossRef
27.
Zurück zum Zitat Kim Y (2012) Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: morphology and performance as a cathode material for lithium ion batteries. ACS Appl Mater Interfaces 4:2329–2333CrossRef Kim Y (2012) Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: morphology and performance as a cathode material for lithium ion batteries. ACS Appl Mater Interfaces 4:2329–2333CrossRef
28.
Zurück zum Zitat Qu Y, Mo Y, Jia X, Zhang L, Du B, Lu Y, Li D, Chen Y (2019) Flux growth and enhanced electrochemical properties of LiNi0.5Co0.2Mn0.3O2 cathode material by excess lithium carbonate for lithium-ion batteries. J Alloy Compd 788:810–818CrossRef Qu Y, Mo Y, Jia X, Zhang L, Du B, Lu Y, Li D, Chen Y (2019) Flux growth and enhanced electrochemical properties of LiNi0.5Co0.2Mn0.3O2 cathode material by excess lithium carbonate for lithium-ion batteries. J Alloy Compd 788:810–818CrossRef
29.
Zurück zum Zitat Li J, Li HY, Stone W, Weber R, Hy S, Dahn JR (2017) Synthesis of single crystal LiNi0.5Mn0.3Co0.2O2 for lithium ion batteries. J Electrochem Soc 164:A3529–A3537CrossRef Li J, Li HY, Stone W, Weber R, Hy S, Dahn JR (2017) Synthesis of single crystal LiNi0.5Mn0.3Co0.2O2 for lithium ion batteries. J Electrochem Soc 164:A3529–A3537CrossRef
30.
Zurück zum Zitat Lee J, Urban A, Li X, Su D, Hautier G, Ceder G (2014) Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343:519–522CrossRef Lee J, Urban A, Li X, Su D, Hautier G, Ceder G (2014) Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343:519–522CrossRef
31.
Zurück zum Zitat Li F, Kong L, Sun Y, Jin Y, Ho P (2018) Micron-sized monocrystalline LiNi1/3Co1/3Mn1/3O2 as high-volumetric-energy-density cathode for lithium-ion batteries. J Mater Chem A 6:12344–12352CrossRef Li F, Kong L, Sun Y, Jin Y, Ho P (2018) Micron-sized monocrystalline LiNi1/3Co1/3Mn1/3O2 as high-volumetric-energy-density cathode for lithium-ion batteries. J Mater Chem A 6:12344–12352CrossRef
32.
Zurück zum Zitat Yoon J-H, Bang H-J, Prakash J, Sun Y-K (2008) Comparative study of Li Ni1/3Co1/3Mn1/3 O2 cathode material synthesized via different synthetic routes for asymmetric electrochemical capacitor applications. Mater Chem Phys 110:222–227CrossRef Yoon J-H, Bang H-J, Prakash J, Sun Y-K (2008) Comparative study of Li Ni1/3Co1/3Mn1/3 O2 cathode material synthesized via different synthetic routes for asymmetric electrochemical capacitor applications. Mater Chem Phys 110:222–227CrossRef
33.
Zurück zum Zitat Kabalnov AS, Shchukin ED (1992) Ostwald ripening theory: applications to fluorocarbon emulsion stability. Adv Colloid Interfaces 38:69–97CrossRef Kabalnov AS, Shchukin ED (1992) Ostwald ripening theory: applications to fluorocarbon emulsion stability. Adv Colloid Interfaces 38:69–97CrossRef
34.
Zurück zum Zitat Gao S, Wei W, Ma M, Qi J, Yang J, Chu S, Zhang J, Guo L (2015) Sol–gel synthesis and electrochemical properties of c-axis oriented LiCoO2 for lithium-ion batteries. RSC Adv 5:51483–51488CrossRef Gao S, Wei W, Ma M, Qi J, Yang J, Chu S, Zhang J, Guo L (2015) Sol–gel synthesis and electrochemical properties of c-axis oriented LiCoO2 for lithium-ion batteries. RSC Adv 5:51483–51488CrossRef
35.
Zurück zum Zitat Fu Z, Hu J, Hu W, Yang S, Luo Y (2018) Quantitative analysis of Ni2+/Ni3+ in Li[NixMnyCoz]O2 cathode materials: non-linear least-squares fitting of XPS spectra. Appl Surf Sci 441:1048–1056CrossRef Fu Z, Hu J, Hu W, Yang S, Luo Y (2018) Quantitative analysis of Ni2+/Ni3+ in Li[NixMnyCoz]O2 cathode materials: non-linear least-squares fitting of XPS spectra. Appl Surf Sci 441:1048–1056CrossRef
36.
Zurück zum Zitat Hua W, Schwarz B, Knapp M, Senyshyn A, Missiul A, Mu X, Wang S, Kuebel C, Binder J-R, Indris S, Ehrenberg H (2018) (De) lithiation mechanism of hierarchically layered LiNi1/3Co1/3Mn1/3O2 cathodes during high-voltage cycling. J Electrochem Soc 166:A5025–A5032CrossRef Hua W, Schwarz B, Knapp M, Senyshyn A, Missiul A, Mu X, Wang S, Kuebel C, Binder J-R, Indris S, Ehrenberg H (2018) (De) lithiation mechanism of hierarchically layered LiNi1/3Co1/3Mn1/3O2 cathodes during high-voltage cycling. J Electrochem Soc 166:A5025–A5032CrossRef
37.
Zurück zum Zitat Nie M, Xia Y-F, Wang Z-B, Yu F-D, Zhang Y, Wu J, Wu B (2015) Effects of precursor particle size on the performance of LiNi0.5Co0.2Mn0.3O2 cathode material. Ceram Int 41:15185–15192CrossRef Nie M, Xia Y-F, Wang Z-B, Yu F-D, Zhang Y, Wu J, Wu B (2015) Effects of precursor particle size on the performance of LiNi0.5Co0.2Mn0.3O2 cathode material. Ceram Int 41:15185–15192CrossRef
38.
Zurück zum Zitat Yin C, Zhou H, Yang Z, Li J (2018) Synthesis and electrochemical properties of LiNi0.5Mn1.5O4 for Li-ion batteries by the metal-organic framework method. ACS Appl Mater Interfaces 10:13625–13634CrossRef Yin C, Zhou H, Yang Z, Li J (2018) Synthesis and electrochemical properties of LiNi0.5Mn1.5O4 for Li-ion batteries by the metal-organic framework method. ACS Appl Mater Interfaces 10:13625–13634CrossRef
39.
Zurück zum Zitat Rodrigues S, Munichandraiah N, Shukla AK (2000) A review of state-of-charge indication of batteries by means of a.c. impedance measurements. J Power Sources 87:12–20CrossRef Rodrigues S, Munichandraiah N, Shukla AK (2000) A review of state-of-charge indication of batteries by means of a.c. impedance measurements. J Power Sources 87:12–20CrossRef
Metadaten
Titel
Single-crystal LiNi0.5Co0.2Mn0.3O2: a high thermal and cycling stable cathodes for lithium-ion batteries
verfasst von
Zeqin Zhong
Lingzhen Chen
Shaozhen Huang
Weili Shang
Lingyong Kong
Ming Sun
Lei Chen
Wangbao Ren
Publikationsdatum
22.10.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-04133-z

Weitere Artikel der Ausgabe 7/2020

Journal of Materials Science 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.