Skip to main content
Erschienen in: Microsystem Technologies 5/2018

28.10.2017 | Technical Paper

Single layer thin photoresist soft etch mask for MEMS applications

verfasst von: Robin Joyce, Deepak Kumar Panwar, Moh. Shakil, Soney Varghese, Jamil Akhtar

Erschienen in: Microsystem Technologies | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Substrate masking plays an important role in wet chemical etching process, however; coating a cost effective masking material with higher stability in the harsh chemical environment is still a challenge in MEMS technology. The durability of a masking material is determined by its capability in withstanding harsh chemicals, whether the material is a soft mask, hard mask or even a metal mask. Conventional substrate masking over wafers includes metal masks or thick photoresist (PR) masks or even multilayer masking. This paper presents an efficient procedure for substrate masking using an uncommon, less viscous photoresist. The optimization results of this photoresist have been reported in this paper. By optimization, an optimal procedure to withstand the PR in harsh chemicals was formulated. The method is highly reliable and cost effective. This procedure was implemented for different MEMS applications to prove the feasibility of substrate masking.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM (2000) Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21(1):27–40CrossRef Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM (2000) Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21(1):27–40CrossRef
Zurück zum Zitat Bien DCS, Rainey PV, Mitchell SJN, Gamble HS (2003) Characterization of masking materials for deep glass micromachining. J Micromech Microeng 13(4):S34CrossRef Bien DCS, Rainey PV, Mitchell SJN, Gamble HS (2003) Characterization of masking materials for deep glass micromachining. J Micromech Microeng 13(4):S34CrossRef
Zurück zum Zitat Chen Q, Gang L, Qing HJ, Zhao JL, Ren QS, Xu YS (2007) A rapid and low-cost procedure for fabrication of glass microfluidic devices. J Microelectromech Syst 16(5):1193–1200CrossRef Chen Q, Gang L, Qing HJ, Zhao JL, Ren QS, Xu YS (2007) A rapid and low-cost procedure for fabrication of glass microfluidic devices. J Microelectromech Syst 16(5):1193–1200CrossRef
Zurück zum Zitat Chen Y, Zhang L, Chen G (2008) Fabrication, modification, and application of poly (methyl methacrylate) microfluidic chips. Electrophoresis 29(9):1801–1814CrossRef Chen Y, Zhang L, Chen G (2008) Fabrication, modification, and application of poly (methyl methacrylate) microfluidic chips. Electrophoresis 29(9):1801–1814CrossRef
Zurück zum Zitat Cheng J, Shoffner MA, Hvichia GE, Kricka LJ, Wilding P (1996) Chip PCR. II. Investigation of different PCR amplification systems in microfabricated silicon-glass chips. Nucleic Acids Res 24(2):380–385CrossRef Cheng J, Shoffner MA, Hvichia GE, Kricka LJ, Wilding P (1996) Chip PCR. II. Investigation of different PCR amplification systems in microfabricated silicon-glass chips. Nucleic Acids Res 24(2):380–385CrossRef
Zurück zum Zitat Conradie EH, Moore DF (2002) SU-8 thick photoresist processing as a functional material for MEMS applications. J Micromech Microeng 12(4):368CrossRef Conradie EH, Moore DF (2002) SU-8 thick photoresist processing as a functional material for MEMS applications. J Micromech Microeng 12(4):368CrossRef
Zurück zum Zitat Effenhauser CS, Manz A, Widmer HM (1993) Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights. Anal Chem 65(19):2637–2642CrossRef Effenhauser CS, Manz A, Widmer HM (1993) Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights. Anal Chem 65(19):2637–2642CrossRef
Zurück zum Zitat Ehrlich DJ, Matsudaira P (1999) Microfluidic devices for DNA analysis. Trends Biotechnol 17(8):315–319CrossRef Ehrlich DJ, Matsudaira P (1999) Microfluidic devices for DNA analysis. Trends Biotechnol 17(8):315–319CrossRef
Zurück zum Zitat Fan ZH, Harrison DJ (1994) Micromachining of capillary electrophoresis injectors and separators of glass chips and evaluation of flow at capillary intersections. Anal. Chem 66(1):177–184CrossRef Fan ZH, Harrison DJ (1994) Micromachining of capillary electrophoresis injectors and separators of glass chips and evaluation of flow at capillary intersections. Anal. Chem 66(1):177–184CrossRef
Zurück zum Zitat Grosse A, Grewe M, Fouckhardt H (2001) Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices. J Micromech Microeng 11(3):257–262CrossRef Grosse A, Grewe M, Fouckhardt H (2001) Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices. J Micromech Microeng 11(3):257–262CrossRef
Zurück zum Zitat Iliescu C, Jing J, Tay FEH, Miao J, Sun T (2005) Characterization of masking layers for deep wet etching of glass in an improved HF/HCl solution. Surf Coat Technol 198(1–3):314–318CrossRef Iliescu C, Jing J, Tay FEH, Miao J, Sun T (2005) Characterization of masking layers for deep wet etching of glass in an improved HF/HCl solution. Surf Coat Technol 198(1–3):314–318CrossRef
Zurück zum Zitat Iliescu C, Chen B, Miao J (2008) On the wet etching of Pyrex glass. Sens Actuators A: Phys 143(1):154–161CrossRef Iliescu C, Chen B, Miao J (2008) On the wet etching of Pyrex glass. Sens Actuators A: Phys 143(1):154–161CrossRef
Zurück zum Zitat Joyce R, Yadav S, Sharma AK, Panwar DK, Bhatia RR, Varghese S, Akhtar J (2016) Pattern transfer of microstructures between deeply etched cavities for MEMS applications. Mater Sci Semicond Process 56:373–380CrossRef Joyce R, Yadav S, Sharma AK, Panwar DK, Bhatia RR, Varghese S, Akhtar J (2016) Pattern transfer of microstructures between deeply etched cavities for MEMS applications. Mater Sci Semicond Process 56:373–380CrossRef
Zurück zum Zitat Ko JS, Yoon HC, Yang H, Pyo HB, Chung KH, Kim SJ, Kim YT (2003) A polymer-based microfluidic device for immunosensing biochips. Lab Chip 3(2):106–113CrossRef Ko JS, Yoon HC, Yang H, Pyo HB, Chung KH, Kim SJ, Kim YT (2003) A polymer-based microfluidic device for immunosensing biochips. Lab Chip 3(2):106–113CrossRef
Zurück zum Zitat Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices. Anal Chem 75(23):6544–6554CrossRef Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices. Anal Chem 75(23):6544–6554CrossRef
Zurück zum Zitat Lin CH, Lee GB, Lin YH, Chang GL (2001) A fast prototyping process for fabrication of microfluidic systems on soda-lime glass. J Micromech Microeng 11(6):726CrossRef Lin CH, Lee GB, Lin YH, Chang GL (2001) A fast prototyping process for fabrication of microfluidic systems on soda-lime glass. J Micromech Microeng 11(6):726CrossRef
Zurück zum Zitat Mata A, Fleischman AJ, Roy S (2006) Fabrication of multi-layer SU-8 microstructures. J Micromech Microeng 16(2):276CrossRef Mata A, Fleischman AJ, Roy S (2006) Fabrication of multi-layer SU-8 microstructures. J Micromech Microeng 16(2):276CrossRef
Zurück zum Zitat Rebenklau L, Wolter KJ, Howitz S (2000) Realization of hybrid microfluidic systems using standard LTCC process. In: IEEE Proceedings of the 50th electronic components and technology conference, pp 1696–1700 Rebenklau L, Wolter KJ, Howitz S (2000) Realization of hybrid microfluidic systems using standard LTCC process. In: IEEE Proceedings of the 50th electronic components and technology conference, pp 1696–1700
Zurück zum Zitat Seiler K, Harrison DJ, Manz A (1993) Planar glass chips for capillary electrophoresis: repetitive sample injection, quantitation, and separation efficiency. Anal Chem 65(10):1481–1488CrossRef Seiler K, Harrison DJ, Manz A (1993) Planar glass chips for capillary electrophoresis: repetitive sample injection, quantitation, and separation efficiency. Anal Chem 65(10):1481–1488CrossRef
Zurück zum Zitat Shoffner MA, Cheng J, Hvichia GE, Kricka LJ, Wilding P (1996) Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR. Nucleic Acids Res 24(2):375–379CrossRef Shoffner MA, Cheng J, Hvichia GE, Kricka LJ, Wilding P (1996) Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR. Nucleic Acids Res 24(2):375–379CrossRef
Zurück zum Zitat Stjernstrm M, Roeraade J (1998) Method for fabrication of microfluidic systems in glass. J Micromech Microeng 8(1):33–38CrossRef Stjernstrm M, Roeraade J (1998) Method for fabrication of microfluidic systems in glass. J Micromech Microeng 8(1):33–38CrossRef
Zurück zum Zitat Wheeler AR, Throndset WR, Whelan RJ, Leach AM, Zare RN, Liao YH, Farrell K, Manger ID, Daridon A (2003) Microfluidic device for single-cell analysis. Anal Chem 75(14):3581–3586CrossRef Wheeler AR, Throndset WR, Whelan RJ, Leach AM, Zare RN, Liao YH, Farrell K, Manger ID, Daridon A (2003) Microfluidic device for single-cell analysis. Anal Chem 75(14):3581–3586CrossRef
Zurück zum Zitat Zhang J, Tan KL, Hong GD, Yang LJ, Gong HQ (2001) Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS. J Micromech Microeng 11(1):20CrossRef Zhang J, Tan KL, Hong GD, Yang LJ, Gong HQ (2001) Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS. J Micromech Microeng 11(1):20CrossRef
Metadaten
Titel
Single layer thin photoresist soft etch mask for MEMS applications
verfasst von
Robin Joyce
Deepak Kumar Panwar
Moh. Shakil
Soney Varghese
Jamil Akhtar
Publikationsdatum
28.10.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 5/2018
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3609-0

Weitere Artikel der Ausgabe 5/2018

Microsystem Technologies 5/2018 Zur Ausgabe

Neuer Inhalt