Skip to main content
Erschienen in: Journal of Materials Science 12/2018

09.03.2018 | Composites

Sintering and tribomechanical properties of gel-combustion-derived nano-alumina and its composites with carbon nanotubes

verfasst von: Rupa Halder, Soumya Sarkar, Siddhartha Bandyopadhyay, Pravash C. Chakraborti

Erschienen in: Journal of Materials Science | Ausgabe 12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fully pure nano-α-alumina (Al2O3) was prepared following gel-combustion method. Near theoretically dense monolithic Al2O3 and its composites reinforced with multiwalled carbon nanotubes (MWCNTs) were prepared using spark plasma sintering (SPS) at 1500 °C under 40 MPa within 10 min. The shrinkage curves were guided in sequence by the crystallization of the amorphous mass followed by a solid-state sintering. The differential nature of electrical conductivity of both composite phases resulted in enhanced densification through localized joule heating. Formation of ~ 1-μm-sized equiaxed matrix grains with uniform distribution of structurally survived CNTs in it was observed in the sintered composites. Within the investigated loading span, the highest Vickers hardness (HV) values were obtained only at 0.5 wt% MWCNT loading in matrix Al2O3. Improvements in HV values for the composites at 0.2 and 2 kgf indentation loads were found to be ~ 18 and ~ 12%, respectively, in comparison with those obtained for pure matrix phase. Quantitative indentation size effect analyzed through standard mathematical models indicated the role of matrix grain refinement and proper matrix–filler load sharing in changing the true hardness. On the contrary, increased CNT concentration leaded to increased sensitivity toward size effect due to the extreme flexible nature of the filler. Unlubricated linear scratch experiments revealed ~ 30–45% lower specific wear rate (WR) values of the composite specimens compared to SPS-processed monolithic Al2O3. Microstructure and scar profile observations were utilized to describe such enhanced wear resistance of present composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Milak PC, Minatto FD, De Noni G Jr., Montedo ORK (2015) Wear performance of alumina-based ceramics—a review of the influence of microstructure on erosive wear. Cerâmica 61:88–103CrossRef Milak PC, Minatto FD, De Noni G Jr., Montedo ORK (2015) Wear performance of alumina-based ceramics—a review of the influence of microstructure on erosive wear. Cerâmica 61:88–103CrossRef
2.
Zurück zum Zitat Al-Sanabani FA, Madfa AA, Al-Qudaimi NH (2014) Alumina ceramic for dental applications: a review article. Am J Mater Res 1:26–34 Al-Sanabani FA, Madfa AA, Al-Qudaimi NH (2014) Alumina ceramic for dental applications: a review article. Am J Mater Res 1:26–34
3.
Zurück zum Zitat Silva MV, Stainer D, Al-Qureshi HA, Montedo ORK, Hotza D (2014) Alumina-based ceramics for armor application: mechanical, characterization and ballistic testing. J Ceram 2014:618154 Silva MV, Stainer D, Al-Qureshi HA, Montedo ORK, Hotza D (2014) Alumina-based ceramics for armor application: mechanical, characterization and ballistic testing. J Ceram 2014:618154
4.
Zurück zum Zitat da Costa Evangelista JP, Gondim AD, Di Souza L, Araujo AS (2016) Alumina-supported potassium compounds as heterogeneous catalysts for biodiesel production: a review. Renew Sustain Energy Rev 59:887–894CrossRef da Costa Evangelista JP, Gondim AD, Di Souza L, Araujo AS (2016) Alumina-supported potassium compounds as heterogeneous catalysts for biodiesel production: a review. Renew Sustain Energy Rev 59:887–894CrossRef
5.
Zurück zum Zitat Munro RG (1997) Evaluated material properties for a sintered α-alumina. J Am Ceram Soc 80:1919–1928CrossRef Munro RG (1997) Evaluated material properties for a sintered α-alumina. J Am Ceram Soc 80:1919–1928CrossRef
6.
Zurück zum Zitat Galusek D, Galusková D (2015) Alumina matrix composites with non-oxide nanoparticle addition and enhanced functionalities. Nanomaterials 5:115–143CrossRef Galusek D, Galusková D (2015) Alumina matrix composites with non-oxide nanoparticle addition and enhanced functionalities. Nanomaterials 5:115–143CrossRef
7.
Zurück zum Zitat Bocanegra-Bernal MH, Dominguez-Rios C, Echeberria J, Reyes-Rojas A, Garcia-Reyes A, Aguilar-Elguezabal A (2016) Spark plasma sintering of multi-, single/double-and single-walled carbon nanotube-reinforced alumina composites: is it justifiable the effort to reinforce them? Ceram Int 42:2054–2062CrossRef Bocanegra-Bernal MH, Dominguez-Rios C, Echeberria J, Reyes-Rojas A, Garcia-Reyes A, Aguilar-Elguezabal A (2016) Spark plasma sintering of multi-, single/double-and single-walled carbon nanotube-reinforced alumina composites: is it justifiable the effort to reinforce them? Ceram Int 42:2054–2062CrossRef
8.
Zurück zum Zitat Ahmad K, Pan W (2015) Microstructure-toughening relation in alumina based multiwall carbonnanotube ceramic composites. J Eur Ceram Soc 35:663–671CrossRef Ahmad K, Pan W (2015) Microstructure-toughening relation in alumina based multiwall carbonnanotube ceramic composites. J Eur Ceram Soc 35:663–671CrossRef
9.
Zurück zum Zitat Yazdani B, Xia Y, Ahmad I, Zhu Y (2015) Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. J Eur Ceram Soc 35:179–186CrossRef Yazdani B, Xia Y, Ahmad I, Zhu Y (2015) Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. J Eur Ceram Soc 35:179–186CrossRef
10.
Zurück zum Zitat Yazdani B, Xu F, Ahmad I, Hou X, Xia Y, Zhu Y (2015) Tribological performance of graphene/carbon nanotube hybrid reinforced Al2O3 composites. Sci Rep 5:11579CrossRef Yazdani B, Xu F, Ahmad I, Hou X, Xia Y, Zhu Y (2015) Tribological performance of graphene/carbon nanotube hybrid reinforced Al2O3 composites. Sci Rep 5:11579CrossRef
12.
Zurück zum Zitat Sarkar S, Das PK (2012) Microstructure and physicomechanical properties of pressureless sintered multiwalled carbon nanotube/alumina nanocomposites. Ceram Int 38:423–432CrossRef Sarkar S, Das PK (2012) Microstructure and physicomechanical properties of pressureless sintered multiwalled carbon nanotube/alumina nanocomposites. Ceram Int 38:423–432CrossRef
13.
Zurück zum Zitat An J-W, You D-H, Lim D-S (2003) Tribological properties of hot-pressed alumina–CNT composites. Wear 255:677–681CrossRef An J-W, You D-H, Lim D-S (2003) Tribological properties of hot-pressed alumina–CNT composites. Wear 255:677–681CrossRef
14.
Zurück zum Zitat Lim D-S, You D-H, Choi H-J, Lim S-H, Jang H (2005) Effect of CNT distribution on tribological behavior of alumina–CNT composites. Wear 259:539–544CrossRef Lim D-S, You D-H, Choi H-J, Lim S-H, Jang H (2005) Effect of CNT distribution on tribological behavior of alumina–CNT composites. Wear 259:539–544CrossRef
15.
Zurück zum Zitat Kim SW, Chung WS, Sohn K-S, Son C-Y, Lee S (2010) Improvement of wear resistance in alumina matrix composites reinforced with carbon nanotubes. Metall Mater Trans A 41A:380–388CrossRef Kim SW, Chung WS, Sohn K-S, Son C-Y, Lee S (2010) Improvement of wear resistance in alumina matrix composites reinforced with carbon nanotubes. Metall Mater Trans A 41A:380–388CrossRef
16.
Zurück zum Zitat Halder R, Bandyopadhyay S (2017) Synthesis and optical properties of anion deficient nano MgO. J Alloys Compd 693:534–542CrossRef Halder R, Bandyopadhyay S (2017) Synthesis and optical properties of anion deficient nano MgO. J Alloys Compd 693:534–542CrossRef
17.
Zurück zum Zitat Aliev AE, Lima MH, Silverman EM, Baughman RH (2010) Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes. Nanotechnology 21:035709CrossRef Aliev AE, Lima MH, Silverman EM, Baughman RH (2010) Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes. Nanotechnology 21:035709CrossRef
18.
Zurück zum Zitat Kajiura H, Tsutsui S, Huang H, Murakami Y (2002) High-quality single-walled carbon nanotubes from arc-produced soot. Chem Phys Lett 364:586–592CrossRef Kajiura H, Tsutsui S, Huang H, Murakami Y (2002) High-quality single-walled carbon nanotubes from arc-produced soot. Chem Phys Lett 364:586–592CrossRef
19.
Zurück zum Zitat Suzuki T, Inoue S, Ando Y (2008) Purification of single-wall carbon nanotubes by using high-pressure micro reactor. Diam Relat Mater 17:1596–1599CrossRef Suzuki T, Inoue S, Ando Y (2008) Purification of single-wall carbon nanotubes by using high-pressure micro reactor. Diam Relat Mater 17:1596–1599CrossRef
20.
Zurück zum Zitat Bertoncini M, Coelho LAF, Maciel IO, Pezzin SH (2011) Purification of single-wall carbon nanotubes by heat treatment and supercritical extraction. Mater Res 14:380–383CrossRef Bertoncini M, Coelho LAF, Maciel IO, Pezzin SH (2011) Purification of single-wall carbon nanotubes by heat treatment and supercritical extraction. Mater Res 14:380–383CrossRef
21.
Zurück zum Zitat Sarkar S, Das PK (2013) Thermal and structural stability of single- and multi-walled carbon nanotubes up to 1800 °C in Argon studied by Raman spectroscopy and transmission electron Microscopy. Mater Res Bull 48:41–47CrossRef Sarkar S, Das PK (2013) Thermal and structural stability of single- and multi-walled carbon nanotubes up to 1800 °C in Argon studied by Raman spectroscopy and transmission electron Microscopy. Mater Res Bull 48:41–47CrossRef
22.
Zurück zum Zitat Hanzel O, Sedlácek J, Sajgalík P (2014) New approach for distribution of carbon nanotubes in alumina matrix. J Eur Ceram Soc 34:1845–1851CrossRef Hanzel O, Sedlácek J, Sajgalík P (2014) New approach for distribution of carbon nanotubes in alumina matrix. J Eur Ceram Soc 34:1845–1851CrossRef
23.
Zurück zum Zitat Ando Y, Zhao X, Shimoyama H, Sakai G, Kaneto K (1999) Physical properties of multiwalled carbon nanotubes. Int J Inorganic Mater 1:77–82CrossRef Ando Y, Zhao X, Shimoyama H, Sakai G, Kaneto K (1999) Physical properties of multiwalled carbon nanotubes. Int J Inorganic Mater 1:77–82CrossRef
24.
Zurück zum Zitat McEuen PL, Fuhrer MS, Park H (2002) Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol 1:78–85CrossRef McEuen PL, Fuhrer MS, Park H (2002) Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol 1:78–85CrossRef
25.
Zurück zum Zitat Huang Q, Jiang D, Ovidko IA, Mukherjee A (2010) High-current-induced damage on carbon nanotubes: the case during spark plasma sintering. Scripta Mater 63:1181–1184CrossRef Huang Q, Jiang D, Ovidko IA, Mukherjee A (2010) High-current-induced damage on carbon nanotubes: the case during spark plasma sintering. Scripta Mater 63:1181–1184CrossRef
26.
Zurück zum Zitat Yamamoto G, Omori M, Yokomizo K, Hashida T (2008) Mechanical properties and structural characterization of carbon nanotube/alumina composites prepared by precursor method. Diam Relat Mater 17:1554–1557CrossRef Yamamoto G, Omori M, Yokomizo K, Hashida T (2008) Mechanical properties and structural characterization of carbon nanotube/alumina composites prepared by precursor method. Diam Relat Mater 17:1554–1557CrossRef
27.
Zurück zum Zitat Bi S, Hou G, Su X, Zhang Y, Guo F (2011) Mechanical properties and oxidation resistance of α-alumina/multi-walled carbon nanotube composite ceramics. Mater Sci Eng, A 528:1596–1601CrossRef Bi S, Hou G, Su X, Zhang Y, Guo F (2011) Mechanical properties and oxidation resistance of α-alumina/multi-walled carbon nanotube composite ceramics. Mater Sci Eng, A 528:1596–1601CrossRef
28.
Zurück zum Zitat Bi S, Su X, Hou G, Liu C, Song W-L, Cao M-S (2013) Electrical conductivity and microwave absorption of shortened multi-walled carbon nanotube/alumina ceramic composites. Ceram Int 39:5979–5983CrossRef Bi S, Su X, Hou G, Liu C, Song W-L, Cao M-S (2013) Electrical conductivity and microwave absorption of shortened multi-walled carbon nanotube/alumina ceramic composites. Ceram Int 39:5979–5983CrossRef
29.
Zurück zum Zitat Kasperski A, Weibel A, Estournès C, Laurent Ch, Peigney A (2013) Preparation-microstructure-property relationships in double-walled carbon nanotubes/alumina composites. Carbon 53:62–72CrossRef Kasperski A, Weibel A, Estournès C, Laurent Ch, Peigney A (2013) Preparation-microstructure-property relationships in double-walled carbon nanotubes/alumina composites. Carbon 53:62–72CrossRef
30.
Zurück zum Zitat Michálek M, Sedláček J, Parchoviansky M, Michálková M, Galusek D (2014) Mechanical properties and electrical conductivity of alumina/MWCNT and alumina/zirconia/MWCNT composites. Ceram Int 40:1289–1295CrossRef Michálek M, Sedláček J, Parchoviansky M, Michálková M, Galusek D (2014) Mechanical properties and electrical conductivity of alumina/MWCNT and alumina/zirconia/MWCNT composites. Ceram Int 40:1289–1295CrossRef
31.
Zurück zum Zitat Bakhsh N, Khalid FA, Hakeem AS (2013) Synthesis and characterization of pressureless sintered carbon nanotube reinforced alumina nanocomposites. Mater Sci Eng, A 578:422–429CrossRef Bakhsh N, Khalid FA, Hakeem AS (2013) Synthesis and characterization of pressureless sintered carbon nanotube reinforced alumina nanocomposites. Mater Sci Eng, A 578:422–429CrossRef
32.
Zurück zum Zitat Puchy V, Hvizdos P, Dusza J, Kovac F, Inam F, Reece MJ (2013) Wear resistance of Al2O3–CNT ceramic nanocomposites at room and high temperatures. Ceram Int 39:5821–5826CrossRef Puchy V, Hvizdos P, Dusza J, Kovac F, Inam F, Reece MJ (2013) Wear resistance of Al2O3–CNT ceramic nanocomposites at room and high temperatures. Ceram Int 39:5821–5826CrossRef
33.
Zurück zum Zitat Thomson KE, Jiang D, Yao W, Ritchie RO, Mukherjee AK (2012) Characterization and mechanical testing of alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering. Acta Mater 60:622–632CrossRef Thomson KE, Jiang D, Yao W, Ritchie RO, Mukherjee AK (2012) Characterization and mechanical testing of alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering. Acta Mater 60:622–632CrossRef
34.
Zurück zum Zitat Zhang SC, Fahrenholtz WG, Hilmas GE, Yadlowsky EJ (2010) Pressureless sintering of carbon nanotube–Al2O3 composites. J Eur Ceram Soc 30:1373–1380CrossRef Zhang SC, Fahrenholtz WG, Hilmas GE, Yadlowsky EJ (2010) Pressureless sintering of carbon nanotube–Al2O3 composites. J Eur Ceram Soc 30:1373–1380CrossRef
35.
Zurück zum Zitat Jiang D, Thomson K, Kuntz JD, Ager JW, Mukherjee AK (2007) Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina-based nanocomposite. Scripta Mater 56:959–962CrossRef Jiang D, Thomson K, Kuntz JD, Ager JW, Mukherjee AK (2007) Effect of sintering temperature on a single-wall carbon nanotube-toughened alumina-based nanocomposite. Scripta Mater 56:959–962CrossRef
36.
Zurück zum Zitat Echeberria J, Rodríguez N, Vleugels J, Vanmeensel K, Reyes-Rojas A, Garcia-Reyes A, Domínguez-Rios C, Aguilar-Elguézabal A, Bocanegra-Bernal MH (2012) Hard and tough carbon nanotube-reinforced zirconia-toughened alumina composites prepared by spark plasma sintering. Carbon 50:706–717CrossRef Echeberria J, Rodríguez N, Vleugels J, Vanmeensel K, Reyes-Rojas A, Garcia-Reyes A, Domínguez-Rios C, Aguilar-Elguézabal A, Bocanegra-Bernal MH (2012) Hard and tough carbon nanotube-reinforced zirconia-toughened alumina composites prepared by spark plasma sintering. Carbon 50:706–717CrossRef
37.
Zurück zum Zitat Ahmad I, Unwin M, Cao H, Chen H, Zhao H, Kennedy A, Zhu YQ (2010) Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: mechanical properties and interfacial investigations. Compos Sci Technol 70:1199–1206CrossRef Ahmad I, Unwin M, Cao H, Chen H, Zhao H, Kennedy A, Zhu YQ (2010) Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: mechanical properties and interfacial investigations. Compos Sci Technol 70:1199–1206CrossRef
38.
Zurück zum Zitat Aguilar-Elguézabal A, Bocanegra-Bernal MH (2014) Fracture behaviour of α-Al2O3 ceramics reinforced with a mixture of single-wall and multi-wall carbon nanotubes. Compos Part B 60:463–470CrossRef Aguilar-Elguézabal A, Bocanegra-Bernal MH (2014) Fracture behaviour of α-Al2O3 ceramics reinforced with a mixture of single-wall and multi-wall carbon nanotubes. Compos Part B 60:463–470CrossRef
40.
Zurück zum Zitat Gong J, Wu J, Guan Z (1999) Examination of the indentation size effect in low-load vickers hardness testing of ceramics. J Eur Ceram Soc 19:2625–2631CrossRef Gong J, Wu J, Guan Z (1999) Examination of the indentation size effect in low-load vickers hardness testing of ceramics. J Eur Ceram Soc 19:2625–2631CrossRef
Metadaten
Titel
Sintering and tribomechanical properties of gel-combustion-derived nano-alumina and its composites with carbon nanotubes
verfasst von
Rupa Halder
Soumya Sarkar
Siddhartha Bandyopadhyay
Pravash C. Chakraborti
Publikationsdatum
09.03.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 12/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2187-6

Weitere Artikel der Ausgabe 12/2018

Journal of Materials Science 12/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.