Skip to main content
Erschienen in: Acta Mechanica 9/2019

02.07.2019 | Original Paper

Size-dependent electromechanical coupling in functionally graded flexoelectric nanocylinders

verfasst von: Liangliang Chu, Yanbin Li, Guansuo Dui

Erschienen in: Acta Mechanica | Ausgabe 9/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Flexoelectricity is an electromechanical coupling between polarization and strain gradient, which not only exhibits strong size dependency but is structure associated (geometry or microstructure). By the definition of flexoelectric coefficients, the flexoelectricity-related strain gradients can be generated by tailoring mechanical structures, such as the traditional designed truncated pyramid. In this work, a novel asymmetric nanocylinder is composed of functionally graded materials presented with uniform pressures on the top surface to create a relatively large inhomogeneous strain field for the achievement of obvious flexoelectric polarization. Based on the power-law-distributed material property assumption, we investigate the flexoelectricity of the proposed functionally graded nanocylinder. Based on the extended linear theory of piezoelectricity, the closed-form solutions are obtained, which can specifically characterize the size-dependent flexoelectricity. The most common setups are applied to quantify the flexoelectric response. From the numerical results, we can conclude that the electromechanical properties can be significantly influenced by the given FG configuration with graded material parameters, which can be a guideline for the design of novel flexoelectric devices.
Literatur
1.
Zurück zum Zitat Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: green’s function solutions and embedded inclusions. Phys. Rev. B 74, 014110 (2006)CrossRef Maranganti, R., Sharma, N.D., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: green’s function solutions and embedded inclusions. Phys. Rev. B 74, 014110 (2006)CrossRef
2.
Zurück zum Zitat Sharma, N.D., Maranganti, R., Sharma, P.: On the possibility of piezoelectric nanocomposites without using piezoelectric materials. J. Mech. Phys. Solids 55, 2328–2350 (2007)CrossRefMATH Sharma, N.D., Maranganti, R., Sharma, P.: On the possibility of piezoelectric nanocomposites without using piezoelectric materials. J. Mech. Phys. Solids 55, 2328–2350 (2007)CrossRefMATH
3.
Zurück zum Zitat Majdoub, M.S., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77, 125424 (2008)CrossRef Majdoub, M.S., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77, 125424 (2008)CrossRef
4.
Zurück zum Zitat Tagantsev, A.K., Meunier, V., Sharma, P.: Novel electromechanical phenomena at the nanoscale: phenomenological theory and atomistic modeling. MRS Bull. 34, 643–647 (2009)CrossRef Tagantsev, A.K., Meunier, V., Sharma, P.: Novel electromechanical phenomena at the nanoscale: phenomenological theory and atomistic modeling. MRS Bull. 34, 643–647 (2009)CrossRef
5.
Zurück zum Zitat Jiang, X., Huang, W., Zhang, S.: Flexoelectric nano-generator: materials, structures and devices. Nano. Energy 2, 1079–1092 (2013)CrossRef Jiang, X., Huang, W., Zhang, S.: Flexoelectric nano-generator: materials, structures and devices. Nano. Energy 2, 1079–1092 (2013)CrossRef
6.
Zurück zum Zitat Krichen, S., Sharma, P.: Flexoelectricity: a perspective on an unusual electromechanical coupling. J. Appl. Mech. 83, 030801 (2016)CrossRef Krichen, S., Sharma, P.: Flexoelectricity: a perspective on an unusual electromechanical coupling. J. Appl. Mech. 83, 030801 (2016)CrossRef
7.
Zurück zum Zitat Zhang, D.P., Lei, Y.J., Adhikari, S.: Flexoelectric effect on vibration responses of piezoelectric nanobeams embedded in viscoelastic medium based on nonlocal elasticity theory. Acta Mech. 229, 2379–2392 (2018)MathSciNetCrossRefMATH Zhang, D.P., Lei, Y.J., Adhikari, S.: Flexoelectric effect on vibration responses of piezoelectric nanobeams embedded in viscoelastic medium based on nonlocal elasticity theory. Acta Mech. 229, 2379–2392 (2018)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Yang, W., Liang, X., Shen, S.: Electromechanical responses of piezoelectric nanoplates with flexoelectricity. Acta Mech. 226, 3097–3110 (2015)MathSciNetCrossRefMATH Yang, W., Liang, X., Shen, S.: Electromechanical responses of piezoelectric nanoplates with flexoelectricity. Acta Mech. 226, 3097–3110 (2015)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Mason, W.P.: Piezoelectricity, its history and applications. J. Acoust. Soc. Am. 70, 1561–1566 (1981)CrossRef Mason, W.P.: Piezoelectricity, its history and applications. J. Acoust. Soc. Am. 70, 1561–1566 (1981)CrossRef
10.
Zurück zum Zitat Kogan, S.M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys. Solid State 5, 2069–2070 (1964) Kogan, S.M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys. Solid State 5, 2069–2070 (1964)
11.
Zurück zum Zitat Tagantsev, A.K.: Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B 34, 5883 (1986)CrossRef Tagantsev, A.K.: Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B 34, 5883 (1986)CrossRef
12.
Zurück zum Zitat Yudin, P.V., Tagantsev, A.K.: Fundamentals of flexoelectricity in solids. Nanotechnology 24, 432001 (2013)CrossRef Yudin, P.V., Tagantsev, A.K.: Fundamentals of flexoelectricity in solids. Nanotechnology 24, 432001 (2013)CrossRef
13.
Zurück zum Zitat Zubko, P., Catalan, G., Tagantsev, A.K.: Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (2013)CrossRef Zubko, P., Catalan, G., Tagantsev, A.K.: Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (2013)CrossRef
14.
Zurück zum Zitat Nguyen, T.D., Mao, S., Yeh, Y.W., Purohit, P.K., McAlpine, M.C.: Nanoscale flexoelectricity. Adv. Mater. 25, 946–974 (2013)CrossRef Nguyen, T.D., Mao, S., Yeh, Y.W., Purohit, P.K., McAlpine, M.C.: Nanoscale flexoelectricity. Adv. Mater. 25, 946–974 (2013)CrossRef
15.
Zurück zum Zitat Zubko, P., Catalan, G., Buckley, A., Welche, P.R.L., Scott, J.F.: Strain-gradient-induced polarization in \(\text{ SrTiO }_{{3}}\) single crystals. Phys. Rev. Lett. 99, 167601 (2007)CrossRef Zubko, P., Catalan, G., Buckley, A., Welche, P.R.L., Scott, J.F.: Strain-gradient-induced polarization in \(\text{ SrTiO }_{{3}}\) single crystals. Phys. Rev. Lett. 99, 167601 (2007)CrossRef
16.
Zurück zum Zitat Nguyen, B.H., Zhuang, X., Rabczuk, T.: Numerical model for the characterization of Maxwell–Wagner relaxation in piezoelectric and flexoelectric composite material. Comput. Struct. 208, 75–91 (2018)CrossRef Nguyen, B.H., Zhuang, X., Rabczuk, T.: Numerical model for the characterization of Maxwell–Wagner relaxation in piezoelectric and flexoelectric composite material. Comput. Struct. 208, 75–91 (2018)CrossRef
17.
Zurück zum Zitat Li. Y., Shu, L., Huang, W., Jiang, X., Wang, H.: Giantflexoelectricity in \({\rm Ba}_{0.6}{\rm Sr}_{0.4}{\rm TiO}_{{3}}/{\rm Ni}_{0.8}{\rm Zn}_{0.2}{\rm Fe}_{{2}}{\rm O}_{{4}}\) composite. Appl. Phys. Lett. 105, 162906 (2014) Li. Y., Shu, L., Huang, W., Jiang, X., Wang, H.: Giantflexoelectricity in \({\rm Ba}_{0.6}{\rm Sr}_{0.4}{\rm TiO}_{{3}}/{\rm Ni}_{0.8}{\rm Zn}_{0.2}{\rm Fe}_{{2}}{\rm O}_{{4}}\) composite. Appl. Phys. Lett. 105, 162906 (2014)
18.
Zurück zum Zitat Huang, W., Yan, X., Kwon, S.R., Zhang, S., Yuan, F.G., Jiang, X.:Flexoelectric strain gradient detection using \({\rm Ba}_{0.64}{\rm Sr}_{0.36}{\rm TiO}_{{3}}\) for sensing. Appl. Phys. Lett. 101, 252903 (2012) Huang, W., Yan, X., Kwon, S.R., Zhang, S., Yuan, F.G., Jiang, X.:Flexoelectric strain gradient detection using \({\rm Ba}_{0.64}{\rm Sr}_{0.36}{\rm TiO}_{{3}}\) for sensing. Appl. Phys. Lett. 101, 252903 (2012)
19.
Zurück zum Zitat Deng, Q., Liu, L., Sharma, P.: Flexoelectricity in soft materials and biological membranes. J. Mech. Phys. Solids 62, 209–227 (2014)MathSciNetCrossRefMATH Deng, Q., Liu, L., Sharma, P.: Flexoelectricity in soft materials and biological membranes. J. Mech. Phys. Solids 62, 209–227 (2014)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Mohammadi, P., Liu, L.P., Sharma, P.: A theory of flexoelectric membranes and effective properties of heterogeneous membranes. J. Appl. Mech. 81, 011007 (2014)CrossRef Mohammadi, P., Liu, L.P., Sharma, P.: A theory of flexoelectric membranes and effective properties of heterogeneous membranes. J. Appl. Mech. 81, 011007 (2014)CrossRef
21.
Zurück zum Zitat Ahmadpoor, F., Sharma, P.: Flexoelectricity in two-dimensional crystalline and biological membranes. Nanoscale 7, 16555–16570 (2015)CrossRef Ahmadpoor, F., Sharma, P.: Flexoelectricity in two-dimensional crystalline and biological membranes. Nanoscale 7, 16555–16570 (2015)CrossRef
22.
Zurück zum Zitat Sharma, N.D., Landis, C.M., Sharma, P.: Piezoelectric thin-film super lattices without using piezoelectric materials. J. Appl. Phys. 108, 024304 (2010)CrossRef Sharma, N.D., Landis, C.M., Sharma, P.: Piezoelectric thin-film super lattices without using piezoelectric materials. J. Appl. Phys. 108, 024304 (2010)CrossRef
23.
Zurück zum Zitat Cross, L.E.: Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41, 53–63 (2006)CrossRef Cross, L.E.: Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41, 53–63 (2006)CrossRef
24.
Zurück zum Zitat Abdollahi, A., Peco, C., Millan, D., Arroyo, M., Arias, I.: Computational evaluation of the flexoelectric effect in dielectric solids. J. Appl. Phys. 116, 093502 (2014)CrossRef Abdollahi, A., Peco, C., Millan, D., Arroyo, M., Arias, I.: Computational evaluation of the flexoelectric effect in dielectric solids. J. Appl. Phys. 116, 093502 (2014)CrossRef
25.
Zurück zum Zitat Abdollahi, A., Millán, D., Peco, C., Arroyo, M., Arias, I.: Revisiting pyramid compression to quantify flexoelectricity: a three-dimensional simulation study. Phys. Rev. B 91, 104103 (2015)CrossRef Abdollahi, A., Millán, D., Peco, C., Arroyo, M., Arias, I.: Revisiting pyramid compression to quantify flexoelectricity: a three-dimensional simulation study. Phys. Rev. B 91, 104103 (2015)CrossRef
26.
Zurück zum Zitat Biancoli, A., Fancher, C.M., Jones, J.L., Damjanovic, D.: Breaking of macroscopic centric symmetry in paraelectric phases of ferroelectric materials and implications for flexoelectricity. Nat. Mater. 14, 224 (2015)CrossRef Biancoli, A., Fancher, C.M., Jones, J.L., Damjanovic, D.: Breaking of macroscopic centric symmetry in paraelectric phases of ferroelectric materials and implications for flexoelectricity. Nat. Mater. 14, 224 (2015)CrossRef
27.
Zurück zum Zitat Zhou, H., Pei, Y., Hong, J., Fang, D.: Analytical method to determine flexoelectric coupling coefficient at nanoscale. Appl. Phys. Lett. 108, 101908 (2016)CrossRef Zhou, H., Pei, Y., Hong, J., Fang, D.: Analytical method to determine flexoelectric coupling coefficient at nanoscale. Appl. Phys. Lett. 108, 101908 (2016)CrossRef
28.
Zurück zum Zitat Deng, Q.: Size-dependent flexoelectric response of a truncated cone and the consequent ramifications for the experimental measurement of flexoelectric properties. J. Appl. Mech. 84, 101007 (2017)CrossRef Deng, Q.: Size-dependent flexoelectric response of a truncated cone and the consequent ramifications for the experimental measurement of flexoelectric properties. J. Appl. Mech. 84, 101007 (2017)CrossRef
29.
Zurück zum Zitat Yan, Z.: Exact solutions for the electromechanical responses of a dielectric nano-ring. J. Intel. Mater. Syst. Str. 28, 1140–1149 (2017)CrossRef Yan, Z.: Exact solutions for the electromechanical responses of a dielectric nano-ring. J. Intel. Mater. Syst. Str. 28, 1140–1149 (2017)CrossRef
30.
Zurück zum Zitat Huang, W., Kwon, S.R., Zhang, S., Yuan, F.G., Jiang, X.: A trapezoidal flexoelectric accelerometer. J. Intel. Mater. Syst. Str. 25, 271–277 (2014)CrossRef Huang, W., Kwon, S.R., Zhang, S., Yuan, F.G., Jiang, X.: A trapezoidal flexoelectric accelerometer. J. Intel. Mater. Syst. Str. 25, 271–277 (2014)CrossRef
31.
Zurück zum Zitat Mbarki, R., Baccam, N., Dayal, K., Sharma, P.: Piezoelectricity above the Curie temperature? Combining flexoelectricity and functional grading to enable high-temperature electromechanical coupling. Appl. Phys. Lett. 104, 122904 (2014)CrossRef Mbarki, R., Baccam, N., Dayal, K., Sharma, P.: Piezoelectricity above the Curie temperature? Combining flexoelectricity and functional grading to enable high-temperature electromechanical coupling. Appl. Phys. Lett. 104, 122904 (2014)CrossRef
32.
Zurück zum Zitat Chu, L., Dui, G., Ju, C.: Flexoelectric effect on the bending and vibration responses of functionally graded piezoelectric nanobeams based on general modified strain gradient theory. Compos. Struct. 186, 39–49 (2018)CrossRef Chu, L., Dui, G., Ju, C.: Flexoelectric effect on the bending and vibration responses of functionally graded piezoelectric nanobeams based on general modified strain gradient theory. Compos. Struct. 186, 39–49 (2018)CrossRef
33.
Zurück zum Zitat Chu, L., Dui, G., Yan, Z., Zheng, Y.: Influence of flexoelectricity on electromechanical properties of functionally graded piezoelectric nanobeams based on modified couple stress theory. Int. J. Appl. Mech. 10, 1850103 (2018)CrossRef Chu, L., Dui, G., Yan, Z., Zheng, Y.: Influence of flexoelectricity on electromechanical properties of functionally graded piezoelectric nanobeams based on modified couple stress theory. Int. J. Appl. Mech. 10, 1850103 (2018)CrossRef
34.
Zurück zum Zitat Kumar, A., Kiran, R., Kumar, R., Jain, S.C., Vaish, R.: Flexoelectric effect in functionally graded materials: a numerical study. Eur. Phys. J. Plus 133, 141 (2018)CrossRef Kumar, A., Kiran, R., Kumar, R., Jain, S.C., Vaish, R.: Flexoelectric effect in functionally graded materials: a numerical study. Eur. Phys. J. Plus 133, 141 (2018)CrossRef
35.
Zurück zum Zitat Liang, X., Hu, S., Shen, S.: Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity. Smart Mater. Struct. 24, 105012 (2015)CrossRef Liang, X., Hu, S., Shen, S.: Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity. Smart Mater. Struct. 24, 105012 (2015)CrossRef
36.
Zurück zum Zitat Yan, Z.: Size-dependent bending and vibration behaviors of piezoelectric circular nanoplates. Smart Mater. Struct. 25, 035017 (2016)CrossRef Yan, Z.: Size-dependent bending and vibration behaviors of piezoelectric circular nanoplates. Smart Mater. Struct. 25, 035017 (2016)CrossRef
37.
Zurück zum Zitat Yan, Z., Jiang, L.Y.: Size-dependent bending and vibration behaviour of piezoelectric nanobeams due to flexoelectricity. J. Phys. D Appl. Phys. 46, 355502 (2013)CrossRef Yan, Z., Jiang, L.Y.: Size-dependent bending and vibration behaviour of piezoelectric nanobeams due to flexoelectricity. J. Phys. D Appl. Phys. 46, 355502 (2013)CrossRef
38.
Zurück zum Zitat Ma, W., Cross, L.E.: Flexoelectric polarization of barium strontium titanate in the paraelectric state. Appl. Phys. Lett. 81, 3440–3442 (2002)CrossRef Ma, W., Cross, L.E.: Flexoelectric polarization of barium strontium titanate in the paraelectric state. Appl. Phys. Lett. 81, 3440–3442 (2002)CrossRef
39.
Zurück zum Zitat Ma, W., Cross, L.E.: Strain-gradient-induced electric polarization in lead zirconate titanate ceramics. Appl. Phys. Lett. 82, 3293–3295 (2003)CrossRef Ma, W., Cross, L.E.: Strain-gradient-induced electric polarization in lead zirconate titanate ceramics. Appl. Phys. Lett. 82, 3293–3295 (2003)CrossRef
40.
Zurück zum Zitat Ma, W., Cross, L.E.: Flexoelectric effect in ceramic lead zirconate titanate. Appl. Phys. Lett. 86, 072905 (2005)CrossRef Ma, W., Cross, L.E.: Flexoelectric effect in ceramic lead zirconate titanate. Appl. Phys. Lett. 86, 072905 (2005)CrossRef
41.
Zurück zum Zitat Ma, W., Cross, L.E.: Flexoelectricity of barium titanate. Appl. Phys. Lett. 88, 232902 (2006)CrossRef Ma, W., Cross, L.E.: Flexoelectricity of barium titanate. Appl. Phys. Lett. 88, 232902 (2006)CrossRef
42.
Zurück zum Zitat Bhaskar, U.K., Banerjee, N., Abdollahi, A., Wang, Z., Schlom, D.G., Rijnders, G., Catalan, G.: A flexoelectric microelectromechanical system on silicon. Nat. Nanotechnol. 11, 263 (2016)CrossRef Bhaskar, U.K., Banerjee, N., Abdollahi, A., Wang, Z., Schlom, D.G., Rijnders, G., Catalan, G.: A flexoelectric microelectromechanical system on silicon. Nat. Nanotechnol. 11, 263 (2016)CrossRef
43.
Zurück zum Zitat Koizum, M.: The concept of FGM. Ceram. Tran. 34, 3–10 (1993) Koizum, M.: The concept of FGM. Ceram. Tran. 34, 3–10 (1993)
44.
Zurück zum Zitat Liew, K.M., Lei, Z.X., Zhang, L.W.: Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos. Struct. 120, 90–97 (2015)CrossRef Liew, K.M., Lei, Z.X., Zhang, L.W.: Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos. Struct. 120, 90–97 (2015)CrossRef
45.
Zurück zum Zitat Wang, Y., Xu, R.Q., Ding, H.J.: Analytical solutions of functionally graded piezoelectric circular plates subjected to axisymmetric loads. Acta Mech. 215, 287–305 (2010)CrossRefMATH Wang, Y., Xu, R.Q., Ding, H.J.: Analytical solutions of functionally graded piezoelectric circular plates subjected to axisymmetric loads. Acta Mech. 215, 287–305 (2010)CrossRefMATH
46.
Zurück zum Zitat Xin, L., Lu, W., Yang, S., Ju, C., Dui, G.: Influence of linear work hardening on the elastic-plastic behavior of a functionally graded thick-walled tube. Acta Mech. 227, 2305–2321 (2016)MathSciNetCrossRefMATH Xin, L., Lu, W., Yang, S., Ju, C., Dui, G.: Influence of linear work hardening on the elastic-plastic behavior of a functionally graded thick-walled tube. Acta Mech. 227, 2305–2321 (2016)MathSciNetCrossRefMATH
47.
Zurück zum Zitat Chu, L., Dui, G.: Exact solutions for functionally graded micro-cylinders in first gradient elasticity. Int. J. Mech. Sci. 148, 366–373 (2018)CrossRef Chu, L., Dui, G.: Exact solutions for functionally graded micro-cylinders in first gradient elasticity. Int. J. Mech. Sci. 148, 366–373 (2018)CrossRef
48.
Zurück zum Zitat Markworth, A.J., Ramesh, K.S., Parks, W.P.: Modelling studies applied to functionally graded materials. J. Mater. Sci. 30, 2183–2193 (1995)CrossRef Markworth, A.J., Ramesh, K.S., Parks, W.P.: Modelling studies applied to functionally graded materials. J. Mater. Sci. 30, 2183–2193 (1995)CrossRef
49.
Zurück zum Zitat Mao, S., Purohit, P.K.: Insights into flexoelectric solids from strain-gradient elasticity. J. Appl. Mech. 81, 081004 (2014)CrossRef Mao, S., Purohit, P.K.: Insights into flexoelectric solids from strain-gradient elasticity. J. Appl. Mech. 81, 081004 (2014)CrossRef
51.
Zurück zum Zitat Shen, S., Hu, S.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58, 665–677 (2010)MathSciNetCrossRefMATH Shen, S., Hu, S.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58, 665–677 (2010)MathSciNetCrossRefMATH
52.
Zurück zum Zitat Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Courier Corporation, North Chelmsford (1964)MATH Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Courier Corporation, North Chelmsford (1964)MATH
53.
Zurück zum Zitat Yurkov, A.S., Tagantsev, A.K.: Strong surface effect on direct bulk flexoelectric response in solids. Appl. Phys. Lett. 108, 022904 (2016)CrossRef Yurkov, A.S., Tagantsev, A.K.: Strong surface effect on direct bulk flexoelectric response in solids. Appl. Phys. Lett. 108, 022904 (2016)CrossRef
54.
Zurück zum Zitat Lu, J., Lv, J., Liang, X., Xu, M., Shen, S.: Improved approach to measure the direct flexoelectric coefficient of bulk polyvinylidene fluoride. J. Appl. Phys. 119, 094104 (2016)CrossRef Lu, J., Lv, J., Liang, X., Xu, M., Shen, S.: Improved approach to measure the direct flexoelectric coefficient of bulk polyvinylidene fluoride. J. Appl. Phys. 119, 094104 (2016)CrossRef
55.
Zurück zum Zitat Giannakopoulos, A.E., Suresh, S.: Theory of indentation of piezoelectric materials. Acta Mater. 47, 2153–2164 (1999)CrossRef Giannakopoulos, A.E., Suresh, S.: Theory of indentation of piezoelectric materials. Acta Mater. 47, 2153–2164 (1999)CrossRef
56.
Zurück zum Zitat Yan, Z., Jiang, L.Y.: Effect of flexoelectricity on the electroelastic fields of a hollow piezoelectric nanocylinder. Smart Mater. Struct. 24, 065003 (2015)CrossRef Yan, Z., Jiang, L.Y.: Effect of flexoelectricity on the electroelastic fields of a hollow piezoelectric nanocylinder. Smart Mater. Struct. 24, 065003 (2015)CrossRef
57.
Zurück zum Zitat Zhou, Y., Yang, X., Pan, D., Wang, B.: Improved incorporation of strain gradient elasticity in the flexoelectricity based energy harvesting from nanobeams. Physica E 98, 148–158 (2018)CrossRef Zhou, Y., Yang, X., Pan, D., Wang, B.: Improved incorporation of strain gradient elasticity in the flexoelectricity based energy harvesting from nanobeams. Physica E 98, 148–158 (2018)CrossRef
Metadaten
Titel
Size-dependent electromechanical coupling in functionally graded flexoelectric nanocylinders
verfasst von
Liangliang Chu
Yanbin Li
Guansuo Dui
Publikationsdatum
02.07.2019
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 9/2019
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02442-7

Weitere Artikel der Ausgabe 9/2019

Acta Mechanica 9/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.