Skip to main content
Erschienen in: Mathematics in Computer Science 2/2020

Open Access 13.11.2019

Skew Category Algebras

verfasst von: V. V. Bavula

Erschienen in: Mathematics in Computer Science | Ausgabe 2/2020

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

We study a new (large) class of algebras (that was introduced in Bavula in Math Comput Sci 11(3–4):253–268, 2017)—the skew category algebras. Any such an algebra \( \mathcal{C}(\sigma )\) is constructed from a category \( \mathcal{C}\) and a functor \(\sigma \) from the category \( \mathcal{C}\) to the category of algebras. Criteria are given for the algebra \( \mathcal{C}(\sigma )\) to be simple or left Noetherian or right Noetherian or semiprime or have 1.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Skew Category Algebras, Examples and Constructions

In this paper, K is a commutative ring with 1, algebra means a K-algebra. In general, it is not assumed that a K-algebra has an identity element. Module means a left module. Missed definitions can be found in [1].
Let \( \mathcal{C}\) be a category, \(\mathrm{Ob} ( \mathcal{C})\) be the set of its objects and \(\mathrm{Mor}( \mathcal{C})\) be the set of its morphisms. For each objects \(i,j\in \mathrm{Ob} ( \mathcal{C})\), \( \mathcal{C}(i,j)\) is the set of morphisms \(f:i\rightarrow j\), the objects \(i=t(f)\) and \(j=h(f)\) are called the tail and head of the morphism f, respectively. For each object \(i\in \mathrm{Ob} ( \mathcal{C})\), \(e_i\) is the identity morphism \(i\rightarrow i\).
Definition 1.1
([2]) Let \( \mathcal{C}\) be a category and \(\sigma \) be a functor from the category \( \mathcal{C}\) to the category of unital K-algebras over a commutative ring K (eg, \(K=\mathbb {Z}\) or K is a field). So, for each object \(i\in \mathrm{Ob} ( \mathcal{C})\), \(D_i:=\sigma (i)\) is a K-algebra and for each morphism
$$\begin{aligned} f: i\mapsto j, \;\; \sigma _f: D_i\rightarrow D_j \end{aligned}$$
is a K-algebra homomorphism, and \(\sigma _{fg}= \sigma _f\sigma _g\) for all morphisms f and g such that \(t(f) = h(g)\). The direct sum of left K-modules
$$\begin{aligned} \mathcal{C}(\sigma )=\bigoplus _{f\in \mathrm{Mor}( \mathcal{C})} D_{h(f)}f \end{aligned}$$
(1)
where \(D_{h(f)}f\) is a free left \(D_{h(f)}\)-module of rank 1, is a K-algebra with multiplication given by the rule: For all \(f,g\in \mathrm{Mor}( \mathcal{C})\), \(a\in D_{h(f)}\) and \(b\in D_{h(g)}\),
$$\begin{aligned} af\cdot bg={\left\{ \begin{array}{ll} a\sigma _f(b)fg&{} \text {if }t(f) = h(g),\\ 0&{} \text {otherwise}.\\ \end{array}\right. } \end{aligned}$$
(2)
It is a trivial exercise to verify that the multiplication is associative. The K-algebra \( \mathcal{C}(\sigma )\) is called a skew category K-algebra. If \(K=\mathbb {Z}\), the \(\mathbb {Z}\)-algebra \( \mathcal{C}(\sigma )\) is called a skew category ring.
Definition 1.2
If the direct sum (1) admits an associative product which is given by the rule: For all \(f,g\in \mathrm{Mor}( \mathcal{C})\), \(a\in D_{h(f)}\) and \(b\in D_{h(g)}\),
$$\begin{aligned} af\cdot bg={\left\{ \begin{array}{ll} a\sigma _f(b)c(f,g)fg&{} \text {if }t(f) = h(g),\\ 0&{} \text {otherwise}, \\ \end{array}\right. } \end{aligned}$$
(3)
where
$$\begin{aligned} c(f,g)\in {\left\{ \begin{array}{ll} D_{h(f)}&{} \text {if }t(f) = h(g),\\ \{ 0\}&{} \text {otherwise,} \\ \end{array}\right. } \end{aligned}$$
(4)
then it is called the twisted skew category K-algebra and is denoted by \( \mathcal{C}(\sigma , c)\).
The categorical nature of the above classes of rings especially the categorical/explicit nature of their multiplications makes these classes important as far as various computational aspects are concerned.
Let \(1_i\) be the identity of the algebra \(D_i\). Then \(1_ie_i\in D_ie_i\subseteq \mathcal{C}(\sigma )\) where \(i\in \mathrm{Ob}( \mathcal{C})\). Abusing the notation, we write \(e_i\) for \(1_ie_i\). Then \(e_i\in \mathcal{C}(\sigma )\).
The\( \mathcal{C}\)-grading on\( \mathcal{C}(\sigma )\). By the very definition, the algebra \( \mathcal{C}(\sigma )\) is a \( \mathcal{C}\)-graded algebra, that is
$$\begin{aligned} D_{h(f)}f\cdot D_{h(g)}g\subseteq D_{h(fg)}fg\;\; \mathrm{for \; all}\;\; f,g\in \mathrm{Mor}( \mathcal{C}). \end{aligned}$$
The algebra \( \mathcal{C}(\sigma )\) is a direct sum
$$\begin{aligned} \mathcal{C}(\sigma )= \bigoplus _{i,j\in \mathrm{Ob} ( \mathcal{C})} \mathcal{C}(\sigma )_{ij}\;\; \mathrm{where}\;\; \mathcal{C}(\sigma )_{ij}=\bigoplus _{f\in \mathcal{C}(j,i)}D_if \end{aligned}$$
(5)
and for all \(i,j,k,l\in \mathrm{Ob} ( \mathcal{C})\),
$$\begin{aligned} \mathcal{C}(\sigma )_{ij} \mathcal{C}(\sigma )_{kl}\subseteq \delta _{jk} \mathcal{C}(\sigma )_{il} \end{aligned}$$
(6)
where \(\delta _{jk}\) is the Kronecker delta. In particular, for each \(i\in \mathrm{Ob} ( \mathcal{C})\), \( \mathcal{C}(\sigma )_{ii}\) is a K-algebra without 1, in general. For each \(i,j\in \mathrm{Ob} ( \mathcal{C})\), \( \mathcal{C}(\sigma )_{ij}\) is a \(( \mathcal{C}(\sigma )_{ii}, \mathcal{C}(\sigma )_{jj})\)-bimodule.
The next two examples show that even for two simplest categories that contain a single object, a single loop or a single invertible loop, the above construction gives apart from a skew polynomial ring or a skew Laurent polynomial ring, new classes of rings.
Example 1
Let \( \mathcal{C}\) be a category that contains a single object, say 1, and \(\mathrm{Mor}( \mathcal{C})= \{ x^i\, | \, i\in \mathbb {N}\}\) where \(e:=x^0\) is the identity morphism. So, \( \mathcal{C}(\sigma )= De\oplus Dx\oplus \cdots \oplus Dx^i\oplus \cdots \) where \(D= \sigma (1)\) and \(ed=\sigma _e(d)e\) and \(x^id= \sigma _x^i(d) x^i\) for all \(i\ge 1\) where \(\sigma _e\) and \(\sigma _x\) are ring endomorphisms of D such that \(\sigma _e \sigma _x= \sigma _x\sigma _e= \sigma _x\) and \(\sigma _e^2= \sigma _e\).
  • If \(\sigma _e = \mathrm{id}_D\) then \( \mathcal{C}(\sigma )= D[x; \sigma _x]\) is a skew polynomial ring.
  • If \(\sigma _e\ne \mathrm{id}_D\) then \( \mathcal{C}(\sigma )\) is not a skew polynomial ring since \(ed= \sigma _e(d)e\) and, in general, \(\sigma _e(d) e \ne de\) for all \(d\in D\) (since \(\sigma _e \ne \mathrm{id}_D\)). For example, let \(D= D_1\times D_2\times D_3\) and \(\sigma _e\) and \(\sigma _x\) are the projections onto \(D_1\times D_2\) and \(D_1\), respectively. Then \(eD_3=0\).
Example 2
Let \( \mathcal{C}\) be a category that contains a single object, say 1, and \(\mathrm{Mor}( \mathcal{C})= \{ x^i\, | \, i\in \mathbb {Z}\}\) where \(e:=x^0\) is the identity morphism \((xx^{-1}=x^{-1}x=e\)). The functor \(\sigma \) is determined by the algebra \(D=\sigma (1)\) and its algebra endomorphisms \(\sigma _e\), \(\sigma _x\) and \(\sigma _{x^{-1}}\) such that
$$\begin{aligned} \sigma _e^2= \sigma _e, \;\; \sigma _e \sigma _{x^{\pm 1}}= \sigma _{x^{\pm 1}}\sigma _e= \sigma _{x^{\pm 1}}\;\; \mathrm{and}\;\; \sigma _x\sigma _{x^{-1}}=\sigma _{x^{-1}}\sigma _x=\sigma _e. \end{aligned}$$
Then \( \mathcal{C}(\sigma )= \oplus _{i\in \mathbb {Z}}Dx^i\).
  • If \(\sigma _e = \mathrm{id}_D\) then \(\sigma _{x^{-1}}=\sigma _x^{-1}\) and \( \mathcal{C}(\sigma )= D[x^{\pm 1}; \sigma _x]\) is a skew Laurent polynomial ring.
  • If \(\sigma _e\ne \mathrm{id}_D\) then \( \mathcal{C}(\sigma )\) is not a skew Laurent polynomial ring. For example, let \(D= D_1\times D_2\) be a direct product of algebras and \(\sigma _e=\sigma _x=\sigma _{x^{-1}}\) be the projection onto \(D_1\). Then \(eD_2=0\) and \(xD_2=x^{-1}D_2=0\).
Example 3
Let \( \mathcal{C}\) be a category that contains a single object, say 1, and the monoid \( \mathcal{C}(1, 1)\) is generated by elements x and y subject to the defining relation \(yx=e\). The functor \(\sigma \) is determined by the algebra \(D=\sigma (1)\) and its three algebra endomorphisms \(\sigma _x\), \(\sigma _y\) and \(\sigma _e\) such that
$$\begin{aligned} \sigma _y\sigma _x=\sigma _e. \end{aligned}$$
The skew category algebra \( \mathcal{C}(\sigma )\) is called the skew semi-Laurent polynomial ring [2]. It is a new class of rings. Suppose, for simplicity, that \(\sigma _e=\mathrm{id}_D\). Then the ring \( \mathcal{C}(\sigma )\) is generated by a ring D and elements x and y subject to the defining relations:
$$\begin{aligned} yx=1, \;\; xd= \sigma _x(d) x \;\; \mathrm{and }\;\; yd= \sigma _y(d) y \;\; \mathrm{for \; all}\;\; d\in D. \end{aligned}$$
We denote this ring by \(D[x,y; \sigma _x, \sigma _y]\). In particular, \(D[x,y; \tau , \tau ^{-1}]\) where \(\tau \) is an automorphism of D.
Example 4
Let \(n\ge 1\) be a natural number and \(\mathcal{M}_n\) be the matrix units category:
$$\begin{aligned} \mathrm{Ob}(\mathcal{M}_n)= \{ 1, \ldots , n\}, \;\; \mathcal{M}_n(i,j)=\{ E_{ji}\}\;\; \mathrm{and}\;\; E_{ij}E_{jk}=E_{ik}\;\; \mathrm{for \; all}\;\; i,j,k. \end{aligned}$$
Let D be a ring and \(f_1, \ldots , f_n\) be its automorphisms. Define \(\sigma \) by the rule \(\sigma (i) = D\) and \(\sigma (E_{ij})=f_if^{-1}_j\). The skew category algebra
$$\begin{aligned} \mathcal{M}_n(\sigma ) = \oplus _{i,j=1}^n DE_{ij} \end{aligned}$$
is called the skew matrix ring where the multiplication is given by the rule
$$\begin{aligned} dE_{ij}\cdot d'E_{kl}=\delta _{jk} df_if^{-1}_j(d')E_{jl}\;\; \mathrm{for \; all}\;\; d,d'\in D. \end{aligned}$$
The skew graph rings and the skew tree rings.
Definition 1.3
([2]) Let \(\Gamma = (\Gamma _0, \Gamma _1)\) be a non-oriented graph without cycles where \(\Gamma _0\) is the set of vertices and \(\Gamma _1\) is the set of edges. If, in addition, \(\Gamma \) is connected then it is called a tree. So, any non-oriented graph without cycles is a disjoint union of its connected components which are trees. Let \({\varvec{\Gamma }}\) be the category groupoid associated with \(\Gamma \): \(\mathrm{Ob}({\varvec{\Gamma }})=\Gamma _0\), for each \(i\in \mathrm{Ob}(\Gamma )\), \({\varvec{\Gamma }}(i,i)=\{ e_{ii} \}\), for distinct \(i,j\in \mathrm{Ob}({\varvec{\Gamma }})\) such that \((i,j)\in \Gamma _1\), \({\varvec{\Gamma }} (i,j) = \{ e_{ji}\}\) and \({\varvec{\Gamma }} (j,i) = \{ e_{ij}\}\), \(e_{ij}e_{ji}=e_{ii}\) and \(e_{ji}e_{ij}=e_{jj}\). Let \(\sigma \) be a functor from \({\varvec{\Gamma }}\) to the category of rings. Then \({\varvec{\Gamma }}(\sigma )\) is called the skew graph ring. If \(\Gamma \) is a tree then \({\varvec{\Gamma }}(\sigma )\) is called the skew tree ring. We say that the functor \(\sigma \) is of isomorphism type if \(\sigma (e_{ij}):\sigma (i) \rightarrow \sigma (j)\) is a unital ring isomorphism for all \((i,j) \in \Gamma _1\).
Theorem 1.4
Let \(\Gamma \) be a finite tree, \(n= |\Gamma _0|\) and the functor \(\sigma \) be of isomorphism type. Suppose that for some \(i\in \Gamma _0\) the ring \(D_i=\sigma (i)\) is a semiprime, left (resp., right) Goldie ring and \(Q_l(D_i)\) (resp., \(Q_r(D_i))\) is its left (resp., right) quotient ring. Then \(\mathbf{\Gamma }(\sigma )\) is a semiprime, left (resp., right) Goldie ring and \(Q_l(\mathbf{\Gamma }(\sigma ))\simeq M_n(Q_l(D_i))\) (resp., \(Q_r(\mathbf{\Gamma }(\sigma ))\simeq M_n(Q_r(D_i))\)) where \(M_n(R)\) is a matrix ring over a ring R. In particular, the left (resp., right) uniform dimension of \({\varvec{\Gamma }}(\sigma )\) is \(nd_l\) (resp., \(nd_r\)) where \(d_l\) (resp., \(d_r\)) is a left (resp., right) uniform dimension of \(D_i\).
Proof
(Sketch). Let \( \mathcal{C}_{D_j}\) be the set of regular elements of the ring \(D_j=\sigma (j)\). All the rings \(D_j\) are isomorphic. The set of regular elements \(S=\oplus _{j=1}^n \mathcal{C}_{D_j}e_{jj}\) is a left Ore set of \(\mathbf{\Gamma }(\sigma )\) such that \(S^{-1}{} \mathbf{\Gamma }(\sigma )\) is a semisimple Artinian ring. Furthermore, \(S^{-1}{} \mathbf{\Gamma }(\sigma )\simeq M_n(Q_l(D_i))\). Hence, \(Q_l(\mathbf{\Gamma }(\sigma ))\simeq M_n(Q_l(D_i))\), and so \(\mathbf{\Gamma }(\sigma )\) is a semiprime, left Goldie ring. The rest is obvious. \(\square \)
As a result we have the following corollary.
Corollary 1.5
Let \(\Gamma \) be a finite non-orientable graph, i.e., \(\Gamma =\coprod _{s=1}^\nu \Gamma ^{(s)}\) is a disjoint union of finite trees \(\Gamma ^{(s)}\). Then
1.
The skew graph ring \(\mathbf{\Gamma }(\sigma )\) is a direct product \(\prod _{s=1}^\nu \mathbf{\Gamma }^{(s)}(\sigma _s)\) of skew tree rings where \(\sigma _s\) is the restriction of the functor \(\sigma \) to \(\Gamma ^{(s)}(\sigma _s)\).
 
2.
If the trees \(\Gamma ^{(s)}\) (\(s=1, \ldots , \nu \)) satisfy the conditions of Theorem 1.4 then \(Q_l(\mathbf{\Gamma }(\sigma ))\simeq \prod _{s=1}^\nu Q_l(\mathbf{\Gamma }^{(s)}(\sigma _s))\) (resp., \(Q_r(\mathbf{\Gamma }(\sigma ))\simeq \prod _{s=1}^\nu Q_r(\mathbf{\Gamma }^{(s)}(\sigma _s))\)) is a direct product of semiprime, left (resp., right) Goldie rings, and so it is a semiprime, left (resp., right) Goldie ring.
 

2 Properties of Skew Category Algebras

In this section, criteria are given for a skew category algebra \( \mathcal{C}(\sigma )\) to be left/right Noetherian or semiprime or simple.
The ideal\(\mathfrak {a}\)and the algebra\(\overline{ \mathcal{C}(\sigma )}\).
Lemma 2.1
Let D be a ring and \(\sigma '\) be its ring endomorphism such that \(\sigma '^2= \sigma '\). Then \(D=\sigma ' (D)\oplus \mathrm{ker } (\sigma ' )\) and the restriction homomorphism \(\sigma ' |_{\sigma ' (D)}: \sigma ' (D) \rightarrow \sigma ' (D)\), \(d\mapsto d\) is the identity automorphism.
Proof
Straightforward. \(\square \)
By (5), the formal sum
$$\begin{aligned} e=\sum _{i\in \mathrm{Ob} ( \mathcal{C})}e_i \end{aligned}$$
determines two well-defined maps:
$$\begin{aligned} e\cdot : \mathcal{C}(\sigma )\rightarrow \mathcal{C}(\sigma ),\;\; a\mapsto ea\;\; \mathrm{and}\;\; \cdot e : \mathcal{C}(\sigma )\rightarrow \mathcal{C}(\sigma ), \;\; a\mapsto ae. \end{aligned}$$
Clearly, the map \(\cdot e\) is the identity map \(\mathrm{id}\) on \( \mathcal{C}(\sigma )\) but the kernel \(\mathfrak {a}\) of the map \(e\cdot \) is equal to
$$\begin{aligned} \mathfrak {a}( \mathcal{C}(\sigma )) := \mathfrak {a}:=\bigoplus _{f\in \mathrm{Mor}( \mathcal{C})} \mathfrak {a}_{h(f)}f \end{aligned}$$
where \(\mathfrak {a}_i:= \mathrm{ker } (\sigma _{e_i})\) and \(\sigma _i:=\sigma _{e_i}:D_i\rightarrow D_i\) is a K-algebra endomorphism, and \((e\cdot )^2=e\cdot \). Since \(\sigma _i^2=\sigma _i\),
$$\begin{aligned} D_i= \sigma _i (D)\oplus \mathfrak {a}_i\;\; \mathrm{for \; all}\;\; i\in \mathrm{Ob}( \mathcal{C}), \end{aligned}$$
(7)
by Lemma 2.1.
$$\begin{aligned} \mathcal{C}(\sigma )=\overline{ \mathcal{C}(\sigma )}\oplus \mathfrak {a}\;\; \mathrm{where} \;\; \overline{ \mathcal{C}(\sigma )}:=\bigoplus _{f\in \mathrm{Mor}( \mathcal{C})} \sigma _{h(f)}(D_{h(f)})f \end{aligned}$$
(8)
is a K-subalgebra of \( \mathcal{C}(\sigma )\) such that the maps \((e\cdot )|_{\overline{ \mathcal{C}(\sigma )}}:\overline{ \mathcal{C}(\sigma )}\rightarrow \overline{ \mathcal{C}(\sigma )}\), \( c\mapsto c\) and \((\cdot e)|_{\overline{ \mathcal{C}(\sigma )}}:\overline{ \mathcal{C}(\sigma )}\rightarrow \overline{ \mathcal{C}(\sigma )}\), \( c\mapsto c\) are the identity map on \(\overline{ \mathcal{C}(\sigma )}\).
Lemma 2.2
The set \(\mathfrak {a}\) is an ideal of the algebra \( \mathcal{C}(\sigma )\) such that \( \mathcal{C}(\sigma )\mathfrak {a}=0\), \(\mathfrak {a}\, \mathcal{C}(\sigma )=\mathfrak {a}\) and \(\mathfrak {a}^2 = 0\).
Proof
\( \mathcal{C}(\sigma )\mathfrak {a}= \mathcal{C}(\sigma )\cdot e\cdot \mathfrak {a}=0\), the rest is obvious. \(\square \)
The next theorem shows that the algebra \(\overline{ \mathcal{C}(\sigma )}\) is also a skew category algebra.
Theorem 2.3
1.
The subalgebra \(\overline{ \mathcal{C}(\sigma )}\) of \( \mathcal{C}(\sigma )\) is also a skew category algebra \(\overline{ \mathcal{C}(\sigma )}= \mathcal{C}(\overline{\sigma } )\) where for each \(i\in \mathrm{Ob}( \mathcal{C})\), \(\overline{\sigma }(i) := \sigma _i(D_i)\) and for each \(f\in \mathcal{C}(i,j)\), \(\overline{\sigma }_f:=\sigma _f|_{\sigma _i(D_i)}: \sigma _i (D_i) \rightarrow \sigma _i (D_i)\), \(d\mapsto \sigma _f(d)\).
 
2.
For all \(i\in \mathrm{Ob}( \mathcal{C})\), \(\overline{\sigma }_i=\mathrm{id}_{\overline{\sigma }(i)}\).
 
3.
\(\mathfrak {a}( \mathcal{C}( \overline{\sigma }))=0\).
 
4.
The maps \(e\cdot \) and \(\cdot e\) are the identity maps on \( \mathcal{C}(\overline{\sigma })\).
 
Proof
1.
Statement 1 follows from (8) and the fact that \(\sigma _j\sigma _f=\sigma _f = \sigma _f\sigma _i\) for all elements \(f\in \mathcal{C}(i,j)\).
 
2–4.
Statement 2 is obvious. Then statements 3 and 4 follow from statement 2. \(\square \)
 
The ideal \(\mathfrak {a}\) is a \( \mathcal{C}\)-graded ideal of the algebra \( \mathcal{C}(\sigma )\). Furthermore,
$$\begin{aligned} \mathfrak {a}= \bigoplus _{i,j\in \mathrm{Ob} ( \mathcal{C})}\mathfrak {a}_{ij} \end{aligned}$$
where \(\mathfrak {a}_{ij}=\bigoplus _{f\in \mathcal{C}(j,i)}\mathfrak {a}_i f\subseteq \mathcal{C}(\sigma )_{ij}\), \(0=\mathfrak {a}_{ij}\mathfrak {a}_{kl}\subseteq \delta _{jk}\mathfrak {a}_{il}\) for all \(i,j,k,l\in \mathrm{Ob} ( \mathcal{C})\). Since \(\overline{ \mathcal{C}(\sigma )}= \mathcal{C}(\overline{\sigma })\) (Theorem 2.3.(1)), the factor algebra
$$\begin{aligned} \overline{ \mathcal{C}(\sigma )}= \mathcal{C}(\sigma )/ \mathfrak {a}= \bigoplus _{f\in \mathrm{Mor}( \mathcal{C})} \overline{D}_{h(f)}f\subseteq \mathcal{C}(\sigma )\end{aligned}$$
is a \( \mathcal{C}\)-graded algebra where \(\overline{D}_i=D_i/\mathfrak {a}_i=\mathrm{im}(\sigma _i)\). Furthermore,
$$\begin{aligned} \overline{ \mathcal{C}(\sigma )}= \bigoplus _{\mathbf{i},j\in \mathrm{Ob} ( \mathcal{C})}\overline{ \mathcal{C}(\sigma )}_{ij}\;\; \mathrm{where}\;\; \overline{ \mathcal{C}(\sigma )}_{ij}= \mathcal{C}(\sigma )_{ij}/ \mathfrak {a}_{ij} \end{aligned}$$
(9)
and \(\overline{ \mathcal{C}(\sigma )}_{ij}\overline{ \mathcal{C}(\sigma )}_{kl}\subseteq \delta _{jk}\overline{ \mathcal{C}(\sigma )}_{il}\) for all \(i,j,k,l\in \mathrm{Ob} ( \mathcal{C})\).
Theorem 2.4
(Criterion for \( \mathcal{C}(\sigma )\) to be a left Noetherian algebra) The algebra \( \mathcal{C}(\sigma )\) is a left Noetherian algebra iff the following conditions hold
1.
the set \(\mathrm{Ob} ( \mathcal{C})\) is a finite set,
 
2.
the ideal \(\mathfrak {a}\) is a finitely generated abelian group,
 
3.
for every object \(i\in \mathrm{Ob} ( \mathcal{C})\), the K-algebra \(\overline{ \mathcal{C}(\sigma )}_{ii}\) is a left Noetherian algebra, and
 
4.
for all objects \(i,j\in \mathrm{Ob} ( \mathcal{C})\) such that \(i\ne j\), the left \(\overline{ \mathcal{C}(\sigma )}_{ii}\)-module \(\overline{ \mathcal{C}(\sigma )}_{ij}\) is finitely generated.
 
Proof
The algebra \( \mathcal{C}(\sigma )= \bigoplus _{j\in \mathrm{Ob} ( \mathcal{C})} \mathcal{C}(\sigma )_{*j}\) is a direct sum of nonzero left ideals where
$$\begin{aligned} \mathcal{C}(\sigma )_{*j}:=\bigoplus _{i\in \mathrm{Ob} ( \mathcal{C})} \mathcal{C}(\sigma )_{ij}. \end{aligned}$$
So, the algebra \( \mathcal{C}(\sigma )\) is a left Noetherian algebra iff the set \(\mathrm{Ob} ( \mathcal{C})\) is a finite set and all the left ideals \( \mathcal{C}(\sigma )_{*j}\) are Noetherian left \( \mathcal{C}(\sigma )\)-modules iff \(|\mathrm{Ob} ( \mathcal{C})|<\infty \), the left \( \mathcal{C}(\sigma )\)-module \(\mathfrak {a}\) is Noetherian and all the left \(\overline{ \mathcal{C}(\sigma )}\)-modules
$$\begin{aligned} \overline{ \mathcal{C}(\sigma )}_{*j}=\bigoplus _{i\in \mathrm{Ob} ( \mathcal{C})} \overline{ \mathcal{C}(\sigma )}_{ij}\end{aligned}$$
are Noetherian (since \( \mathcal{C}(\sigma )=\overline{ \mathcal{C}(\sigma )}\oplus \mathfrak {a}\) is a direct sum of left \( \mathcal{C}(\sigma )\)-modules) iff conditions 1 and 2 hold (since \( \mathcal{C}(\sigma )\mathfrak {a}=0\), Lemma 2.4) and the left \(\overline{ \mathcal{C}(\sigma )}_{ii}\)-module \(\overline{ \mathcal{C}(\sigma )}_{ij}\) is Noetherian for all \(i,j\in \mathrm{Ob} ( \mathcal{C})\) (since each left \(\overline{ \mathcal{C}(\sigma )}\)-submodule M of \(\overline{ \mathcal{C}(\sigma )}_{*j}\) is a direct sum
$$\begin{aligned} M=eM=\bigoplus _{i\in \mathrm{Ob} ( \mathcal{C})}e_iM \end{aligned}$$
where \(e_iM\) is a left \(\overline{ \mathcal{C}(\sigma )}_{ii}\)-submodule of \(\overline{ \mathcal{C}(\sigma )}_{ij}\) and the functor from the category of all \(\overline{ \mathcal{C}(\sigma )}_{ii}\)-submodules of \(\overline{ \mathcal{C}(\sigma )}_{ij}\) to the category of all \(\overline{ \mathcal{C}(\sigma )}\)-submodules of \(\overline{ \mathcal{C}(\sigma )}_{*j}\),
$$\begin{aligned} N\rightarrow \overline{ \mathcal{C}(\sigma )}N=\bigoplus _{k\in \mathrm{Ob} ( \mathcal{C})} \overline{ \mathcal{C}(\sigma )}_{ki}N \end{aligned}$$
is faithful since \(e_i\overline{ \mathcal{C}(\sigma )}N=\overline{ \mathcal{C}(\sigma )}_{ii}N=N\)) iff statements 1–4 hold. \(\square \)
Proposition 2.5
(Criterion for \( \mathcal{C}(\sigma )\) to be a right Noetherian algebra) The algebra \( \mathcal{C}(\sigma )\) is a right Noetherian algebra iff the following conditions hold
1.
the set \(\mathrm{Ob} ( \mathcal{C})\) is a finite set,
 
2.
for every object \(i\in \mathrm{Ob} ( \mathcal{C})\), the K-algebra \( \mathcal{C}(\sigma )_{ii}\) is a right Noetherian algebra, and
 
3.
for all objects \(i,j\in \mathrm{Ob} ( \mathcal{C})\) such that \(i\ne j\), the right \( \mathcal{C}(\sigma )_{jj}\)-module \( \mathcal{C}(\sigma )_{ij}\) is finitely generated.
 
Proof
The algebra \( \mathcal{C}(\sigma )= \bigoplus _{i\in \mathrm{Ob} ( \mathcal{C})} \mathcal{C}(\sigma )_{i*}\) is a direct sum of nonzero right ideals where
$$\begin{aligned} \mathcal{C}(\sigma )_{i*}=\bigoplus _{j\in \mathrm{Ob} ( \mathcal{C})} \mathcal{C}(\sigma )_{ij}. \end{aligned}$$
So, the algebra \( \mathcal{C}(\sigma )\) is a right Noetherian algebra iff the set \(\mathrm{Ob} ( \mathcal{C})\) is a finite set and all right ideals \( \mathcal{C}(\sigma )_{i*}\) are Noetherian right \( \mathcal{C}(\sigma )\)-modules iff \(|\mathrm{Ob} ( \mathcal{C})|<\infty \) and the right \( \mathcal{C}(\sigma )_{jj}\)-module \( \mathcal{C}(\sigma )_{ij}\) is Noetherian for all \(i,j\in \mathrm{Ob} ( \mathcal{C})\) iff \(|\mathrm{Ob} ( \mathcal{C})|<\infty \), the rings \( \mathcal{C}(\sigma )_{ii}\) are right Noetherian and the right \( \mathcal{C}(\sigma )_{jj}\)-modules \( \mathcal{C}(\sigma )_{ij}\) are finitely generated for all \(i\ne j\). \(\square \)
Example 5
Let \( \mathcal{C}\): \(1{\mathop {\rightarrow }\limits ^{f}}2\) and the functor \(\sigma \) is as follows: \(\sigma (1) = \mathbb {Q}\), \(\sigma (2) =\mathbb {R}\), \(\sigma _{e_1}=\mathrm{id}_{\mathbb {Q}}\), \(\sigma _{e_2}=\mathrm{id}_{\mathbb {R}}\) and \(\sigma _f:\mathbb {Q}\rightarrow \mathbb {R}\), \(q\mapsto q\). Then the algebra \( \mathcal{C}(\sigma )\) is isomorphic to the lower triangular matrix algebra \(\begin{pmatrix} \mathbb {Q}&{} 0 \\ \mathbb {R}&{}\mathbb {R}\end{pmatrix}\). By Theorem 2.4, the algebra \( \mathcal{C}(\sigma )\) is left Noetherian but not right Noetherian, by Proposition 2.5 (since \(\mathbb {R}_\mathbb {Q}\) is not a finitely generated right \(\mathbb {Q}\)-module).
Example 6
Let \( \mathcal{C}\): \(1{\mathop {\rightarrow }\limits ^{f}}2\) and the functor \(\sigma \) is as follows: \(\sigma (1) = K[t]\) is a polynomial algebra in the variable t over K, \(\sigma (2) =K\), \(\sigma _{e_1}:K[t]\rightarrow K[t]\), \(t\mapsto 0\); \(\sigma _{e_2}=\mathrm{id}_{K}:K\rightarrow K\) and \(\sigma _f:K[t]\rightarrow K\), \(t\mapsto 0\). Then \(\mathfrak {a}= tK[t]e_1\) is not a finitely generated \(\mathbb {Z}\)-module. So, the algebra \( \mathcal{C}(\sigma )\) is not a left Noetherian algebra, by Theorem 2.4. Since the algebra \( \mathcal{C}(\sigma )_{11}=K[t]e_1\) is not a right Noetherian algebra, the ring \( \mathcal{C}(\sigma )\) is not a right Noetherian ring, by Proposition 2.5.
Lemma 2.6
(Existence of 1 in \( \mathcal{C}(\sigma )\)) The algebra \( \mathcal{C}(\sigma )\) has 1 iff the set \(\mathrm{Ob} ( \mathcal{C})\) is a finite set and \(\sigma _{e_i}=\mathrm{id}_{D_i}\) for all \(i\in \mathrm{Ob} ( \mathcal{C})\). In this case, \(e=\sum _{i\in \mathrm{Ob} ( \mathcal{C})}e_i\) is the identity of the algebra \( \mathcal{C}(\sigma )\).
Proof
\((\Rightarrow )\) Suppose that 1 is an identity of \( \mathcal{C}(\sigma )\). Then necessarily the set \(\mathrm{Ob} ( \mathcal{C})\) is a finite set, otherwise \(1a=0\) for some nonzero element a of \( \mathcal{C}(\sigma )\). The \(1=\sum _{i,j} 1_{ij}\) where \(1_{ij}\in \mathcal{C}(\sigma )_{ij}\). The equalities \( 1e_j=e_j=e_j1\) for all \(j\in \mathrm{Ob} ( \mathcal{C})\) imply that \(1=\sum _{i\in \mathrm{Ob} ( \mathcal{C})} e_i=e\). Then, necessarily \(\sigma _{e_i}=\mathrm{id}_{D_i}\) for all \(i\in \mathrm{Ob} ( \mathcal{C})\).
\((\Leftarrow )\) Clearly, e is the identity of the algebra \( \mathcal{C}(\sigma )\). \(\square \)
Lemma 2.7
Suppose that \(n=|\mathrm{Ob}( \mathcal{C})|<\infty \). If I is an ideal of \( \mathcal{C}(\sigma )\) such that \(e_iIe_i=0\) for all \(i\in \mathrm{Ob}( \mathcal{C})\) then \(I^{n+1}=0\).
Proof
By (8), \( \mathcal{C}(\sigma )= \overline{ \mathcal{C}(\sigma )}\oplus \mathfrak {a}\). Hence, \(I\subseteq \overline{I}\oplus \mathfrak {a}\) where \(\overline{I}= (I+\mathfrak {a})/\mathfrak {a}= \sum _{i,j\in \mathrm{Ob}( \mathcal{C})} e_iIe_j\subseteq \overline{ \mathcal{C}(\sigma )}\). Notice that \(\overline{I}^n=0\) since \(e_iIe_i=0\) for all \(i\in \mathrm{Ob}( \mathcal{C})\). Now,
$$\begin{aligned} I^{n+1}\subseteq (\overline{I}+\mathfrak {a})^{n+1} \subseteq \overline{I}^{n+1}+\mathfrak {a}\overline{I}^n =0 \end{aligned}$$
since \(\mathfrak {a}^2=0\) and \( \mathcal{C}(\sigma )\mathfrak {a}=0\) (Lemma 2.2). \(\square \)
Recall that a ring is a semiprime ring if the zero ideal is the only nilpotent ideal.
Theorem 2.8
(Criterion for \( \mathcal{C}(\sigma )\) to be a semiprime algebra) Suppose that \(n:=|\mathrm{Ob}( \mathcal{C})|<\infty \). Then the following statements are equivalent.
1.
The algebra \( \mathcal{C}(\sigma )\) is a semiprime algebra.
 
2.
The algebras \( \mathcal{C}(\sigma )_{ii}\) are semiprime where \(i\in \mathrm{Ob}( \mathcal{C})\) and, for all distinct \(i,j\in \mathrm{Ob} ( \mathcal{C})\), \(a_{ij} \mathcal{C}(\sigma )_{ji}\ne 0\) and \( \mathcal{C}(\sigma )_{ji}a_{ij}\ne 0\) for all nonzero elements \(a_{ij}\in \mathcal{C}(\sigma )_{ij}\).
 
3.
The algebras \( \mathcal{C}(\sigma )_{ii}\) are semiprime where \(i\in \mathrm{Ob}( \mathcal{C})\) and each ideal I of \( \mathcal{C}(\sigma )\) such that \(e_iIe_i=0\) for all \(i\in \mathrm{Ob}( \mathcal{C})\) is equal to zero.
 
Proof
Since \(|\mathrm{Ob}( \mathcal{C})|<\infty \), the direct product of algebras \(\mathcal{D}:= \prod _{i\in \mathrm{Ob}( \mathcal{C})} \mathcal{C}(\sigma )_{ii}\) is a semiprime algebra iff all the algebras \( \mathcal{C}(\sigma )_{ii}\) are semiprime.
\((1\Rightarrow 2)\) If \(\mathfrak {b}\) is a nonzero nilpotent ideal of the ring \(\mathcal{D}\) and \((\mathfrak {b}) = \mathcal{C}(\sigma )\mathfrak {b} \mathcal{C}(\sigma )\) is the ideal of \( \mathcal{C}(\sigma )\) generated by \(\mathfrak {b}\) then
$$\begin{aligned} (\mathfrak {b})^k \subseteq (\mathfrak {b}^{\lfloor \frac{k}{n^2}\rfloor })\;\; \mathrm{for\; all}\;\; k\ge 1 \end{aligned}$$
where for a real number r, \(\lfloor r\rfloor :=\max \{ z\in \mathbb {Z}\, | \, z\le r\}\), and so the ideal \((\mathfrak {b})\) of the algebra \(\mathcal{D}\) is a nilpotent ideal. Therefore, the ring \( \mathcal{C}(\sigma )_{ii}\) must be semiprime for all \(i\in \mathrm{Ob} ( \mathcal{C})\).
Suppose that there exists a nonzero element \(a_{ij}\in \mathcal{C}(\sigma )_{ij}\) for some distinct objects i and j such that either \(a_{ij} \mathcal{C}(\sigma )_{ji}=0\) or \( \mathcal{C}(\sigma )_{ji}a_{ij}=0\). Then \((a_{ij})^2= (a_{ij} \mathcal{C}(\sigma )_{ji}a_{ij})=0\), a contradiction.
\((2\Rightarrow 1)\) Since all rings \( \mathcal{C}(\sigma )_{ii}\) are semiprime, the ideal \(\mathfrak {a}\) is equal to zero, by Lemma 2.2. Therefore, if J is a nilpotent ideal of \( \mathcal{C}(\sigma )\) then necessarily \(J=\bigoplus _{i,j\in \mathrm{Ob} ( \mathcal{C})}J_{ij}\) where \(J_{ij}=e_iJe_j\). Furthermore, all \(J_{ii}=0\) since the rings \( \mathcal{C}(\sigma )_{ii}\) are semiprime (and \(J_{ii}^m\subseteq J^m\) for all \(m\ge 1\)). Suppose that \(J\ne 0\). We seek a contradiction. Then \(J_{ij}\ne 0\) for some \(i\ne j\). Then, by the assumption, either \( \mathcal{C}(\sigma )_{ji}J_{ij}\) is a nonzero nilpotent ideal of the algebra \( \mathcal{C}(\sigma )_{jj}\) or \(J_{ij} \mathcal{C}(\sigma )_{ji}\) is a nonzero nilpotent ideal of the algebra \( \mathcal{C}(\sigma )_{ii}\), a contradiction.
\((1\Rightarrow 3)\) The algebras \( \mathcal{C}(\sigma )_{ii}\) are semiprime for all \(i\in \mathrm{Ob}( \mathcal{C})\), by the implication \((1\Rightarrow 2)\). By Lemma 2.7, each ideal I of \( \mathcal{C}(\sigma )\) such that \(e_iIe_i=0\) for all \(i\in \mathrm{Ob}( \mathcal{C})\) is a nilpotent ideal, so it must be zero (since \( \mathcal{C}(\sigma )\) is a semiprime ring).
\((3\Rightarrow 1)\) If I is a nilpotent ideal of \( \mathcal{C}(\sigma )\) then for each \(i\in \mathrm{Ob}( \mathcal{C})\), \(I_{ii}\) is a nilpotent ideals of the semiprime ring \( \mathcal{C}(\sigma )_{ii}\), and so \(I_{ii}=0\). Then, we must have \(I=0\), by the second assumption of statement 3. \(\square \)
Theorem 2.9
(Simplicity criterion for \( \mathcal{C}(\sigma )\)) The algebra \( \mathcal{C}(\sigma )\) is a simple algebra iff the following conditions hold
1.
\(\mathfrak {a}=0\),
 
2.
for every \(i\in \mathrm{Ob} ( \mathcal{C})\), the ring \( \mathcal{C}(\sigma )_{ii}\) is simple,
 
3.
for all distinct \(i,j\in \mathrm{Ob} ( \mathcal{C})\), \( \mathcal{C}(\sigma )_{ij}\) is a simple \(( \mathcal{C}(\sigma )_{ii}, \mathcal{C}(\sigma )_{jj})\)-bimodule (in particular, \( \mathcal{C}(\sigma )_{ij}\ne 0\)), and
 
4.
\( \mathcal{C}(\sigma )_{ij} \mathcal{C}(\sigma )_{jk}\ne 0\) for all \(i,j,k\in \mathrm{Ob} ( \mathcal{C})\).
 
Proof
\((\Rightarrow )\) Let \( \mathcal{C}_{ij}= \mathcal{C}(\sigma )_{ij}\).
(i)
\(\mathfrak {a}=0\), by Lemma 2.2.
 
(ii)
For every\(i\in \mathrm{Ob} ( \mathcal{C})\), \( \mathcal{C}_{ii}\)is a simple ring: Suppose that \(\mathfrak {b}\) is a proper ideal of the ring \( \mathcal{C}_{ii}\) then \((\mathfrak {b})\) is a proper ideal of \( \mathcal{C}(\sigma )\) since \((\mathfrak {b}) \cap \mathcal{C}_{ii}= \mathfrak {b}\), a contradiction.
 
(iii)
For all distinct objects\(i,j\in \mathrm{Ob} ( \mathcal{C})\), \( \mathcal{C}_{ij}\ne 0\): Suppose that \( \mathcal{C}_{ij}=0\) for some distinct objects i and j. Then the ideal \(( \mathcal{C}_{ii})\) of \( \mathcal{C}(\sigma )\) is a proper ideal since \(( \mathcal{C}_{ii})\cap \mathcal{C}_{jj}= \mathcal{C}_{ji} \mathcal{C}_{ii} \mathcal{C}_{ij}=0\), a contradiction.
 
(iv)
For all distinct objects\(i,j\in \mathrm{Ob} ( \mathcal{C})\), \( \mathcal{C}_{ij}\)is a simple\(( \mathcal{C}_{ii}, \mathcal{C}_{jj})\)-bimodule: Suppose that \(\mathfrak {b}\) is a proper \(( \mathcal{C}_{ii}, \mathcal{C}_{jj})\)-sub-bimodule of \( \mathcal{C}_{ij}\) then \((\mathfrak {b})\) is a proper ideal of the algebra \( \mathcal{C}(\sigma )\) since \((\mathfrak {b}) \cap \mathcal{C}_{ij}=\mathfrak {b}\), a contradiction.
 
(v)
\( \mathcal{C}_{ij} \mathcal{C}_{jk}\ne 0\)for all objects\(i,j,k\in \mathrm{Ob} ( \mathcal{C})\): The statement (v) holds in the following cases \(i=j=k\) (by (ii)), \(i=j\) or \(j=k\) (by (iii)). Suppose that \(i=k\) and \( \mathcal{C}_{ij} \mathcal{C}_{ji}=0\), we seek a contradiction. Then the ideal \(( \mathcal{C}_{ij})\) of \( \mathcal{C}(\sigma )\) is a proper ideal since \(( \mathcal{C}_{ij})\cap \mathcal{C}_{ii}= \mathcal{C}_{ij} \mathcal{C}_{ji}=0\), a contradiction. Suppose that \( \mathcal{C}_{ij} \mathcal{C}_{jk}=0\) for some distinct i, j and k. Then the ideal \(( \mathcal{C}_{ij})\) of \( \mathcal{C}(\sigma )\) is a proper ideal since \( ( \mathcal{C}_{ij})\cap \mathcal{C}_{kk}= \mathcal{C}_{ki} \mathcal{C}_{ij} \mathcal{C}_{jk}=0\), a contradiction.
 
\((\Leftarrow )\) Suppose that conditions 1–4 hold. By conditions 1–3, condition 4 can be replaced by condition \(4'\): \( \mathcal{C}_{ij} \mathcal{C}_{jk}= \mathcal{C}_{ik}\) for all \(i,j,k\in \mathrm{Ob} ( \mathcal{C})\). Let J be a nonzero ideal of \( \mathcal{C}(\sigma )\). We have to show that \(J= \mathcal{C}(\sigma )\). By condition 1, \(e_iJe_j\ne 0\) for some i and j. By conditions 2 and 3, \(J_{ij}=J\cap \mathcal{C}_{ij}= \mathcal{C}_{ij}\). By condition \(4'\), \( \mathcal{C}_{st}= \mathcal{C}_{si} \mathcal{C}_{ij} \mathcal{C}_{jt}\subseteq J\) for all st. This means that \(J= \mathcal{C}(\sigma )\), as required. \(\square \)
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
download
DOWNLOAD
print
DRUCKEN
Literatur
1.
Zurück zum Zitat McConnell, J.C., Robson, J.C.: Noncommutative Noetherian rings. With the Cooperation of L. W. Small. Revised edition. Graduate Studies in Mathematics, vol. 30. American Mathematical Society, Providence (2001)MATH McConnell, J.C., Robson, J.C.: Noncommutative Noetherian rings. With the Cooperation of L. W. Small. Revised edition. Graduate Studies in Mathematics, vol. 30. American Mathematical Society, Providence (2001)MATH
2.
Zurück zum Zitat Bavula, V.V.: Quiver generalized Weyl algebras, skew category algebras and diskew polynomial rings. Math. Comput. Sci. 11(3–4), 253–268 (2017)MathSciNetCrossRef Bavula, V.V.: Quiver generalized Weyl algebras, skew category algebras and diskew polynomial rings. Math. Comput. Sci. 11(3–4), 253–268 (2017)MathSciNetCrossRef
Metadaten
Titel
Skew Category Algebras
verfasst von
V. V. Bavula
Publikationsdatum
13.11.2019
Verlag
Springer International Publishing
Erschienen in
Mathematics in Computer Science / Ausgabe 2/2020
Print ISSN: 1661-8270
Elektronische ISSN: 1661-8289
DOI
https://doi.org/10.1007/s11786-019-00415-6

Weitere Artikel der Ausgabe 2/2020

Mathematics in Computer Science 2/2020 Zur Ausgabe

Premium Partner