Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 12/2018

30.05.2018 | Original Article

Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics

verfasst von: Jinao Zhang, Yongmin Zhong, Chengfan Gu

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bro-Nielsen M (1998) Finite element modeling in surgery simulation. Proc IEEE 86:490–503CrossRef Bro-Nielsen M (1998) Finite element modeling in surgery simulation. Proc IEEE 86:490–503CrossRef
2.
Zurück zum Zitat Zhang J, Zhong Y, Gu C (2018) Deformable models for surgical simulation: a survey. IEEE Rev Biomed Eng:1–1 Zhang J, Zhong Y, Gu C (2018) Deformable models for surgical simulation: a survey. IEEE Rev Biomed Eng:1–1
3.
Zurück zum Zitat Miller K (2016) Computational biomechanics for patient-specific applications. Ann Biomed Eng 44:1–2CrossRef Miller K (2016) Computational biomechanics for patient-specific applications. Ann Biomed Eng 44:1–2CrossRef
4.
Zurück zum Zitat Cover SA, Ezquerra NF, O’Brien JF, Rowe R, Gadacz T, Palm E (1993) Interactively deformable models for surgery simulation. IEEE Comput Graph Appl 13:68–75CrossRef Cover SA, Ezquerra NF, O’Brien JF, Rowe R, Gadacz T, Palm E (1993) Interactively deformable models for surgery simulation. IEEE Comput Graph Appl 13:68–75CrossRef
5.
Zurück zum Zitat CaniGascuel M, Desbrun M (1997) Animation of deformable models using implicit surfaces. IEEE Trans Vis Comput Graph 3:39–50CrossRef CaniGascuel M, Desbrun M (1997) Animation of deformable models using implicit surfaces. IEEE Trans Vis Comput Graph 3:39–50CrossRef
6.
Zurück zum Zitat Duan Y, Huang W, Chang H, Chen W, Zhou J, Teo SK, Su Y, Chui CK, Chang S (2016) Volume preserved mass-spring model with novel constraints for soft tissue deformation. IEEE J Biomed Health Inform 20:268–280CrossRef Duan Y, Huang W, Chang H, Chen W, Zhou J, Teo SK, Su Y, Chui CK, Chang S (2016) Volume preserved mass-spring model with novel constraints for soft tissue deformation. IEEE J Biomed Health Inform 20:268–280CrossRef
7.
Zurück zum Zitat Frisken-Gibson SF (1997) 3D ChainMail: a fast algorithm for deforming volumetric objects, Proceedings of the Symposium on Interactive 3D graphics, 149–154 Frisken-Gibson SF (1997) 3D ChainMail: a fast algorithm for deforming volumetric objects, Proceedings of the Symposium on Interactive 3D graphics, 149–154
8.
Zurück zum Zitat Zhang J, Zhong Y, Smith J, Gu C (2016) A new ChainMail approach for real-time soft tissue simulation. Bioengineered 7:246–252CrossRef Zhang J, Zhong Y, Smith J, Gu C (2016) A new ChainMail approach for real-time soft tissue simulation. Bioengineered 7:246–252CrossRef
9.
Zurück zum Zitat Zhang J, Zhong Y, Gu C (2017) Ellipsoid bounding region-based ChainMail algorithm for soft tissue deformation in surgical simulation. Int J Interact Des Manuf (IJIDeM) Zhang J, Zhong Y, Gu C (2017) Ellipsoid bounding region-based ChainMail algorithm for soft tissue deformation in surgical simulation. Int J Interact Des Manuf (IJIDeM)
10.
Zurück zum Zitat Zhang J, Zhong Y, Smith J, Gu C (2017) ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation. Technol Health Care 25:231–239CrossRef Zhang J, Zhong Y, Smith J, Gu C (2017) ChainMail based neural dynamics modeling of soft tissue deformation for surgical simulation. Technol Health Care 25:231–239CrossRef
11.
Zurück zum Zitat Camara M, Mayer E, Darzi A, Pratt P (2016) Soft tissue deformation for surgical simulation: a position-based dynamics approach. Int J Comput Assist Radiol Surg 11:919–928CrossRef Camara M, Mayer E, Darzi A, Pratt P (2016) Soft tissue deformation for surgical simulation: a position-based dynamics approach. Int J Comput Assist Radiol Surg 11:919–928CrossRef
12.
Zurück zum Zitat Misra S, Ramesh KT, Okamura AM (2008) Modeling of tool-tissue interactions for computer-based surgical simulation: a literature review. Presence Teleop Virt 17:463–491CrossRef Misra S, Ramesh KT, Okamura AM (2008) Modeling of tool-tissue interactions for computer-based surgical simulation: a literature review. Presence Teleop Virt 17:463–491CrossRef
13.
Zurück zum Zitat Cotin S, Delingette H, Ayache N (1999) Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans Vis Comput Graph 5:62–73CrossRef Cotin S, Delingette H, Ayache N (1999) Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans Vis Comput Graph 5:62–73CrossRef
14.
Zurück zum Zitat Wu W, Heng PA (2005) An improved scheme of an interactive finite element model for 3D soft-tissue cutting and deformation. Vis Comput 21:707–716CrossRef Wu W, Heng PA (2005) An improved scheme of an interactive finite element model for 3D soft-tissue cutting and deformation. Vis Comput 21:707–716CrossRef
15.
Zurück zum Zitat Weber D, Mueller-Roemer J, Altenhofen C, Stork A, Fellner D (2015) Deformation simulation using cubic finite elements and efficient p-multigrid methods. Comput Graph-Uk 53 (185–195CrossRef Weber D, Mueller-Roemer J, Altenhofen C, Stork A, Fellner D (2015) Deformation simulation using cubic finite elements and efficient p-multigrid methods. Comput Graph-Uk 53 (185–195CrossRef
16.
Zurück zum Zitat Yang C, Li S, Lan Y, Wang L, Hao A, Qin H (2016) Coupling time-varying modal analysis and FEM for real-time cutting simulation of objects with multi-material sub-domains. Comput Aided Geom Des 43:53–67CrossRef Yang C, Li S, Lan Y, Wang L, Hao A, Qin H (2016) Coupling time-varying modal analysis and FEM for real-time cutting simulation of objects with multi-material sub-domains. Comput Aided Geom Des 43:53–67CrossRef
17.
Zurück zum Zitat Huang J, Liu X, Bao H, Guo B, Shum H-Y (2006) An efficient large deformation method using domain decomposition. Comput Graph-Uk 30:927–935CrossRef Huang J, Liu X, Bao H, Guo B, Shum H-Y (2006) An efficient large deformation method using domain decomposition. Comput Graph-Uk 30:927–935CrossRef
18.
Zurück zum Zitat Strbac V, Sloten JV, Famaey N (2015) Analyzing the potential of GPGPUs for real-time explicit finite element analysis of soft tissue deformation using CUDA. Finite Elem Anal Des 105:79–89CrossRef Strbac V, Sloten JV, Famaey N (2015) Analyzing the potential of GPGPUs for real-time explicit finite element analysis of soft tissue deformation using CUDA. Finite Elem Anal Des 105:79–89CrossRef
19.
Zurück zum Zitat Cotin S, Delingette H, Ayache N (2000) A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. Vis Comput 16:437–452CrossRef Cotin S, Delingette H, Ayache N (2000) A hybrid elastic model for real-time cutting, deformations, and force feedback for surgery training and simulation. Vis Comput 16:437–452CrossRef
20.
Zurück zum Zitat Zhu B, Gu L (2012) A hybrid deformable model for real-time surgical simulation. Comput Med Imaging Graph 36:356–365CrossRef Zhu B, Gu L (2012) A hybrid deformable model for real-time surgical simulation. Comput Med Imaging Graph 36:356–365CrossRef
21.
Zurück zum Zitat Zhang GY, Wittek A, Joldes GR, Jin X, Miller K (2014) A three-dimensional nonlinear meshfree algorithm for simulating mechanical responses of soft tissue. Eng Anal Bound Elem 42:60–66CrossRef Zhang GY, Wittek A, Joldes GR, Jin X, Miller K (2014) A three-dimensional nonlinear meshfree algorithm for simulating mechanical responses of soft tissue. Eng Anal Bound Elem 42:60–66CrossRef
22.
Zurück zum Zitat Courtecuisse H, Allard J, Kerfriden P, Bordas SPA, Cotin S, Duriez C (2014) Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med Image Anal 18:394–410CrossRef Courtecuisse H, Allard J, Kerfriden P, Bordas SPA, Cotin S, Duriez C (2014) Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med Image Anal 18:394–410CrossRef
23.
Zurück zum Zitat Xu S, Liu X, Zhang H, Hu L (2011) A nonlinear viscoelastic tensor-mass visual model for surgery simulation. IEEE Trans Instrum Meas 60:14–20CrossRef Xu S, Liu X, Zhang H, Hu L (2011) A nonlinear viscoelastic tensor-mass visual model for surgery simulation. IEEE Trans Instrum Meas 60:14–20CrossRef
24.
Zurück zum Zitat Dick C, Georgii J, Westermann R (2011) A real-time multigrid finite hexahedra method for elasticity simulation using CUDA. Simul Model Pract Theory 19:801–816CrossRef Dick C, Georgii J, Westermann R (2011) A real-time multigrid finite hexahedra method for elasticity simulation using CUDA. Simul Model Pract Theory 19:801–816CrossRef
25.
Zurück zum Zitat Miller K, Joldes G, Lance D, Wittek A (2007) Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Int J Numer Method Biomed Eng 23:121–134 Miller K, Joldes G, Lance D, Wittek A (2007) Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Int J Numer Method Biomed Eng 23:121–134
26.
Zurück zum Zitat Johnsen SF, Taylor ZA, Clarkson MJ, Hipwell J, Modat M, Eiben B, Han L, Hu Y, Mertzanidou T, Hawkes DJ, Ourselin S (2015) NiftySim: a GPU-based nonlinear finite element package for simulation of soft tissue biomechanics. Int J Comput Assist Radiol Surg 10:1077–1095CrossRef Johnsen SF, Taylor ZA, Clarkson MJ, Hipwell J, Modat M, Eiben B, Han L, Hu Y, Mertzanidou T, Hawkes DJ, Ourselin S (2015) NiftySim: a GPU-based nonlinear finite element package for simulation of soft tissue biomechanics. Int J Comput Assist Radiol Surg 10:1077–1095CrossRef
27.
Zurück zum Zitat Goulette F, Chen Z-W (2015) Fast computation of soft tissue deformations in real-time simulation with hyper-elastic mass links. Comput Methods Appl Mech Eng 295:18–38CrossRef Goulette F, Chen Z-W (2015) Fast computation of soft tissue deformations in real-time simulation with hyper-elastic mass links. Comput Methods Appl Mech Eng 295:18–38CrossRef
28.
Zurück zum Zitat Zhong Y, Shirinzadeh B, Smith J (2008) Reaction-diffusion based deformable object simulation. Int J Image Graph 8:265–280CrossRef Zhong Y, Shirinzadeh B, Smith J (2008) Reaction-diffusion based deformable object simulation. Int J Image Graph 8:265–280CrossRef
29.
Zurück zum Zitat Sadd MH (2009) Elasticity: theory, applications, and numerics, Academic Press Sadd MH (2009) Elasticity: theory, applications, and numerics, Academic Press
30.
Zurück zum Zitat Keldermann R, Nash M, Panfilov A (2009) Modeling cardiac mechano-electrical feedback using reaction-diffusion-mechanics systems. Physica D 238:1000–1007CrossRef Keldermann R, Nash M, Panfilov A (2009) Modeling cardiac mechano-electrical feedback using reaction-diffusion-mechanics systems. Physica D 238:1000–1007CrossRef
31.
Zurück zum Zitat Keldermann RH, Nash MP, Gelderblom H, Wang VY, Panfilov AV (2010) Electromechanical wavebreak in a model of the human left ventricle. Am J Phys Heart Circ Phys 299:H134–H143 Keldermann RH, Nash MP, Gelderblom H, Wang VY, Panfilov AV (2010) Electromechanical wavebreak in a model of the human left ventricle. Am J Phys Heart Circ Phys 299:H134–H143
32.
Zurück zum Zitat Gizzi A, Cherubini C, Filippi S, Pandolfi A (2015) Theoretical and numerical modeling of nonlinear electromechanics with applications to biological active media. Commun Comput Phys 17:93–126CrossRef Gizzi A, Cherubini C, Filippi S, Pandolfi A (2015) Theoretical and numerical modeling of nonlinear electromechanics with applications to biological active media. Commun Comput Phys 17:93–126CrossRef
33.
Zurück zum Zitat Murray JD (2002) Mathematical biology I: an introduction, vol. 17 of Interdisciplinary Applied Mathematics. Springer, New York Murray JD (2002) Mathematical biology I: an introduction, vol. 17 of Interdisciplinary Applied Mathematics. Springer, New York
34.
Zurück zum Zitat Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544CrossRef Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544CrossRef
35.
Zurück zum Zitat Luo C-h, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 74:1071–1096CrossRef Luo C-h, Rudy Y (1994) A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 74:1071–1096CrossRef
36.
Zurück zum Zitat Noble D (1962) A modification of the Hodgkin–Huxley equations applicable to Purkinje fibre action and pacemaker potentials. J Physiol 160:317–352CrossRef Noble D (1962) A modification of the Hodgkin–Huxley equations applicable to Purkinje fibre action and pacemaker potentials. J Physiol 160:317–352CrossRef
37.
Zurück zum Zitat Chua LO, Roska T (1993) The CNN paradigm. IEEE Trans Circuits Syst I, Fundam Theory Appl 40:147–156CrossRef Chua LO, Roska T (1993) The CNN paradigm. IEEE Trans Circuits Syst I, Fundam Theory Appl 40:147–156CrossRef
38.
Zurück zum Zitat Thiran P, Setti G, Hasler M (1998) An approach to information propagation in 1-D cellular neural networks—part I: local diffusion. IEEE Trans Circuits Syst I, Fundam Theory Appl 45:777–789CrossRef Thiran P, Setti G, Hasler M (1998) An approach to information propagation in 1-D cellular neural networks—part I: local diffusion. IEEE Trans Circuits Syst I, Fundam Theory Appl 45:777–789CrossRef
39.
Zurück zum Zitat Setti G, Thiran P, Serpico C (1998) An approach to information propagation in 1-D cellular neural networks—part II: global propagation. IEEE Trans Circuits Syst I, Fundam Theory Appl 45:790–811CrossRef Setti G, Thiran P, Serpico C (1998) An approach to information propagation in 1-D cellular neural networks—part II: global propagation. IEEE Trans Circuits Syst I, Fundam Theory Appl 45:790–811CrossRef
40.
Zurück zum Zitat Kozek T, Chua LO, Roska T, Wolf D, Tetzlaff R, Puffer F, Lotz K (1995) Simulating nonlinear waves and partial differential equations via CNN—part II: typical examples. IEEE Trans Circuits Syst I, Fundam Theory Appl 42:816–820CrossRef Kozek T, Chua LO, Roska T, Wolf D, Tetzlaff R, Puffer F, Lotz K (1995) Simulating nonlinear waves and partial differential equations via CNN—part II: typical examples. IEEE Trans Circuits Syst I, Fundam Theory Appl 42:816–820CrossRef
41.
Zurück zum Zitat Szolgay P, Vörös G, Erőss G (1993) On the applications of the cellular neural network paradigm in mechanical vibrating systems. IEEE Trans Circuits Syst I, Fundam Theory Appl 40:222–227CrossRef Szolgay P, Vörös G, Erőss G (1993) On the applications of the cellular neural network paradigm in mechanical vibrating systems. IEEE Trans Circuits Syst I, Fundam Theory Appl 40:222–227CrossRef
42.
Zurück zum Zitat Chua LO, Yang L (1988) Cellular neural networks: theory. IEEE Trans Circuits Syst 35:1257–1272CrossRef Chua LO, Yang L (1988) Cellular neural networks: theory. IEEE Trans Circuits Syst 35:1257–1272CrossRef
43.
Zurück zum Zitat Vijayan P, Kallinderis Y (1994) A 3D finite-volume scheme for the Euler equations on adaptive tetrahedral grids. J Comput Phys 113:249–267CrossRef Vijayan P, Kallinderis Y (1994) A 3D finite-volume scheme for the Euler equations on adaptive tetrahedral grids. J Comput Phys 113:249–267CrossRef
44.
Zurück zum Zitat Chua LO, Hasler M, Moschytz GS, Neirynck J (1995) Autonomous cellular neural networks: a unified paradigm for pattern formation and active wave propagation. IEEE Trans Circuits Syst I, Fundam Theory Appl 42:559–577CrossRef Chua LO, Hasler M, Moschytz GS, Neirynck J (1995) Autonomous cellular neural networks: a unified paradigm for pattern formation and active wave propagation. IEEE Trans Circuits Syst I, Fundam Theory Appl 42:559–577CrossRef
45.
Zurück zum Zitat Fung Y-C (1993) Biomechanics: mechanical properties of living tissues, Springer-Verlag Fung Y-C (1993) Biomechanics: mechanical properties of living tissues, Springer-Verlag
46.
Zurück zum Zitat Taylor ZA, Cheng M, Ourselin S (2008) High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Trans Med Imaging 27:650–663CrossRef Taylor ZA, Cheng M, Ourselin S (2008) High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Trans Med Imaging 27:650–663CrossRef
47.
Zurück zum Zitat Sparks JL, Vavalle NA, Kasting KE, Long B, Tanaka ML, Sanger PA, Schnell K, Conner-Kerr TA (2015) Use of silicone materials to simulate tissue biomechanics as related to deep tissue injury. Adv Skin Wound Care 28:59–68CrossRef Sparks JL, Vavalle NA, Kasting KE, Long B, Tanaka ML, Sanger PA, Schnell K, Conner-Kerr TA (2015) Use of silicone materials to simulate tissue biomechanics as related to deep tissue injury. Adv Skin Wound Care 28:59–68CrossRef
48.
Zurück zum Zitat Jingya Z, Jiajun W, Xiuying W, Dagan F (2014) The adaptive FEM elastic model for medical image registration. Phys Med Biol 59:97–118CrossRef Jingya Z, Jiajun W, Xiuying W, Dagan F (2014) The adaptive FEM elastic model for medical image registration. Phys Med Biol 59:97–118CrossRef
49.
Zurück zum Zitat Misra J, Saha I (2010) Artificial neural networks in hardware a survey of two decades of progress. Neurocomputing 74:239–255CrossRef Misra J, Saha I (2010) Artificial neural networks in hardware a survey of two decades of progress. Neurocomputing 74:239–255CrossRef
50.
Zurück zum Zitat Ullah Z, Augarde CE (2013) Finite deformation elasto-plastic modelling using an adaptive meshless method. Comput Struct 118:39–52CrossRef Ullah Z, Augarde CE (2013) Finite deformation elasto-plastic modelling using an adaptive meshless method. Comput Struct 118:39–52CrossRef
51.
Zurück zum Zitat Picinbono G, Lombardo JC, Delingette H, Ayache N (2002) Improving realism of a surgery simulator: linear anisotropic elasticity, complex interactions and force extrapolation. J Vis Comput Animat 13:147–167CrossRef Picinbono G, Lombardo JC, Delingette H, Ayache N (2002) Improving realism of a surgery simulator: linear anisotropic elasticity, complex interactions and force extrapolation. J Vis Comput Animat 13:147–167CrossRef
52.
Zurück zum Zitat Xia P (2016) New advances for haptic rendering: state of the art. Vis Comput:1–17 Xia P (2016) New advances for haptic rendering: state of the art. Vis Comput:1–17
Metadaten
Titel
Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics
verfasst von
Jinao Zhang
Yongmin Zhong
Chengfan Gu
Publikationsdatum
30.05.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 12/2018
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-018-1849-5

Weitere Artikel der Ausgabe 12/2018

Medical & Biological Engineering & Computing 12/2018 Zur Ausgabe