Skip to main content
Erschienen in: Mechanics of Composite Materials 6/2020

18.02.2020

Spatial Buckling Modes of a Fiber (Fiber Bundle) of Composites with a [±45]2s Stacking Sequence Under the Tension and Compression of Test Specimens

verfasst von: V. N. Paimushin, R. K. Gazizullin, M. A. Shishov

Erschienen in: Mechanics of Composite Materials | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A refined formulation is presented for linearized problems on internal multiscale spatial buckling modes of a fiber or fiber bundle — the structural elements of fibrous composites — that is in a subcritical (unperturbed) state under the action of shear and tensile (compressive) stresses in the transverse direction. Such an initial stress state is formed in fibers and fiber bundles in tension and compression tests of plane test specimens of angle-ply composites reinforced with straight fibers. To formulate the problem, equations are constructed by reducting a consistent variant of geometrically nonlinear equations of elasticity theory to one-dimensional equations of the theory of straight rods taking into account their interaction with the surrounding matrix. These equations are based on using the refined Timoshenko shear model in the perturbed state of composite with account of tension-compression strains in the transverse direction for a rigid fiber (fiber bundle) represented in the form of a rod with a rectangular cross section and the model of a transversely soft layer with a fixed outer boundary of the periodicity cell of composite for four binder elements introduced into consideration. It is shown that, in loading test specimens with a [±45]2s structure, a continuous rearrangement of the composite structure is possible in both compression and tension. This occurs owing to the realization and continuous changes of internal buckling modes with continuous variations of the parameter of wave formation. This fact, in particular, can explain the phenomenon of decreasing of the averaged shear modulus of a fibrous composite with growing shear strains and the formation of a reversible nonlinearly elastic component of its total strain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. N. Paimushin and V. I. Shalashilin, “A consistent version of the theory of deformation of continuous media in the quadratic approximation,” Dokl. RAN, 396, No. 4, 492−495 (2004). V. N. Paimushin and V. I. Shalashilin, “A consistent version of the theory of deformation of continuous media in the quadratic approximation,” Dokl. RAN, 396, No. 4, 492−495 (2004).
2.
Zurück zum Zitat V. N. Paimushin, and V. I. Shalashilin, “On the relations of the theory of strains in the quadratic approximation and the problems of constructing refined versions of the geometrically nonlinear theory of layered structural members,” Prikl. Mat. Mekh., 69, No. 5, 861−881 (2005). V. N. Paimushin, and V. I. Shalashilin, “On the relations of the theory of strains in the quadratic approximation and the problems of constructing refined versions of the geometrically nonlinear theory of layered structural members,” Prikl. Mat. Mekh., 69, No. 5, 861−881 (2005).
3.
Zurück zum Zitat V. N. Paimushin, “On equations of the geometrically nonlinear elasticity theory and momentless shells at arbitrary displacements,” Prikl. Mat. Mekh., 72, No. 5, 597−6100 (2008). V. N. Paimushin, “On equations of the geometrically nonlinear elasticity theory and momentless shells at arbitrary displacements,” Prikl. Mat. Mekh., 72, No. 5, 597−6100 (2008).
4.
Zurück zum Zitat V. V. Novozhilov, Fundamentals of the Nonlinear Elasticity theory [in Russian], Gostekhizdat, Leningrad−Moscow (1948). V. V. Novozhilov, Fundamentals of the Nonlinear Elasticity theory [in Russian], Gostekhizdat, Leningrad−Moscow (1948).
5.
Zurück zum Zitat L. H. Donnell, Beams, Plates and Shells, McGraw-Hill, N. Y. (1976). L. H. Donnell, Beams, Plates and Shells, McGraw-Hill, N. Y. (1976).
6.
Zurück zum Zitat F. N. Shklyarchuk, “To the calculation of the strain state and stability of geometrically nonlinear elastic systems,” Izv. RAN, Mekh. Tverd. Tela, 33, No. 1, 140−146 (1998). F. N. Shklyarchuk, “To the calculation of the strain state and stability of geometrically nonlinear elastic systems,” Izv. RAN, Mekh. Tverd. Tela, 33, No. 1, 140−146 (1998).
7.
Zurück zum Zitat D. V. Berezhnoi, V. N. Paimushin, and V. I. Shalashilin, “Studies on the quality of geometrically nonlinear elasticity theory for small strains and arbitrary displacements,” Izv. RAN, Mekh. Tverd. Tela, 44, No. 6, 837−851 (2009). D. V. Berezhnoi, V. N. Paimushin, and V. I. Shalashilin, “Studies on the quality of geometrically nonlinear elasticity theory for small strains and arbitrary displacements,” Izv. RAN, Mekh. Tverd. Tela, 44, No. 6, 837−851 (2009).
8.
Zurück zum Zitat A. N. Guz’ , Stability of Elastic Bodies at Finite Strains [in Russian], Naukova Dumka, Kiev (1973). A. N. Guz’ , Stability of Elastic Bodies at Finite Strains [in Russian], Naukova Dumka, Kiev (1973).
9.
Zurück zum Zitat V. V. Bolotin and Yu. N. Novichkov, Mechanics of Multilayered Structures, Mashinostroenie, Moscow (1980). V. V. Bolotin and Yu. N. Novichkov, Mechanics of Multilayered Structures, Mashinostroenie, Moscow (1980).
10.
Zurück zum Zitat B. W. Rosen, “Mechanics of composite strengthening. Fibre composite materials,” Proc. Am. Soc. Metals., 574−586 (1965). B. W. Rosen, “Mechanics of composite strengthening. Fibre composite materials,” Proc. Am. Soc. Metals., 574−586 (1965).
11.
Zurück zum Zitat B. Budiansky and N. A. Fleck, “Compressive failure of fibre composites,” J. Mech. and Physics of Solids, 41, No. 1, 183−211 (1993).CrossRef B. Budiansky and N. A. Fleck, “Compressive failure of fibre composites,” J. Mech. and Physics of Solids, 41, No. 1, 183−211 (1993).CrossRef
12.
Zurück zum Zitat Xu Yong Li and K. L. Reifsnider, “Micromechanical modeling of composite compressive strength,” J. Compos. Mater., 27, No. 6, 572−588 (1993).CrossRef Xu Yong Li and K. L. Reifsnider, “Micromechanical modeling of composite compressive strength,” J. Compos. Mater., 27, No. 6, 572−588 (1993).CrossRef
13.
Zurück zum Zitat G. Zhang and R. A. Latour Jr., “FRP composite compressive strength and its dependence upon interfacial bond strength, fiber misalignment, and matrix nonlinearity,” J. Thermoplast. Compos. Mater., 6, No. 4, 298−311 (1993).CrossRef G. Zhang and R. A. Latour Jr., “FRP composite compressive strength and its dependence upon interfacial bond strength, fiber misalignment, and matrix nonlinearity,” J. Thermoplast. Compos. Mater., 6, No. 4, 298−311 (1993).CrossRef
14.
Zurück zum Zitat G. Zhang and R. A. Latour Jr., “An analytical and numerical study of fiber microbuckling,” Compos. Sci. Technol., 51, No. 1, 95−109 (1994).CrossRef G. Zhang and R. A. Latour Jr., “An analytical and numerical study of fiber microbuckling,” Compos. Sci. Technol., 51, No. 1, 95−109 (1994).CrossRef
15.
Zurück zum Zitat N. K. Naik and R. S. Kumar, “Compressive strength of unidirectional composites: Evaluation and comparison of prediction models,” Compos. Struct., 46, No. 3, 299−308 (1999).CrossRef N. K. Naik and R. S. Kumar, “Compressive strength of unidirectional composites: Evaluation and comparison of prediction models,” Compos. Struct., 46, No. 3, 299−308 (1999).CrossRef
16.
Zurück zum Zitat A. Jumahat, C. Soutis, F. R. Jones, and A. Hodzic, “Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading,” Compos. Struct., 92, No. 2, 295−305 (2010).CrossRef A. Jumahat, C. Soutis, F. R. Jones, and A. Hodzic, “Fracture mechanisms and failure analysis of carbon fibre/toughened epoxy composites subjected to compressive loading,” Compos. Struct., 92, No. 2, 295−305 (2010).CrossRef
17.
Zurück zum Zitat V. N. Paimushin, D. V. Tarlakovskii, and S. A. Kholmogorov, “On the nonclassical buckling mode and fracture of composite test samples in conditions of three-point bending,” Uch. Zap., Kazan University, Ser. Fiz.-Mat. Nauki, 15, No. 3, 350−375 (2016). V. N. Paimushin, D. V. Tarlakovskii, and S. A. Kholmogorov, “On the nonclassical buckling mode and fracture of composite test samples in conditions of three-point bending,” Uch. Zap., Kazan University, Ser. Fiz.-Mat. Nauki, 15, No. 3, 350−375 (2016).
18.
Zurück zum Zitat V. N. Paimushin, “Problems of geometric nonlinearity and stability in the mechanics of thin shells and rectilinear rods,” Prikl. Mat. Mekh., 71, No. 5, 855−893 (2007). V. N. Paimushin, “Problems of geometric nonlinearity and stability in the mechanics of thin shells and rectilinear rods,” Prikl. Mat. Mekh., 71, No. 5, 855−893 (2007).
19.
Zurück zum Zitat V. N. Paimushin, I. Sh. Gyunal, S. A. Lukankin, and V. A. Firsov, “A quality analysis of the nonlinear elasticity theory for the stability problems of planar laminated curved beams: problem statement,” Izv. Vuz. Aviats. Tekhn., No. 2, 34−37 (2010). V. N. Paimushin, I. Sh. Gyunal, S. A. Lukankin, and V. A. Firsov, “A quality analysis of the nonlinear elasticity theory for the stability problems of planar laminated curved beams: problem statement,” Izv. Vuz. Aviats. Tekhn., No. 2, 34−37 (2010).
20.
Zurück zum Zitat V. N. Paimushin, I. Sh. Gyunal, S. A. Lukankin, and V. A. Firsov, “A quality analysis of the nonlinear elasticity theory for the stability problems of planar laminated curved beams (algorithm and results of a numerical investigation,” Izv. Vuz. Aviats. Tekhn., No. 3, 16−19 (2010). V. N. Paimushin, I. Sh. Gyunal, S. A. Lukankin, and V. A. Firsov, “A quality analysis of the nonlinear elasticity theory for the stability problems of planar laminated curved beams (algorithm and results of a numerical investigation,” Izv. Vuz. Aviats. Tekhn., No. 3, 16−19 (2010).
21.
Zurück zum Zitat V. N. Paimushin and S. A. Kholmogorov, “Consistent equations of the nonlinear theory of straight multilayered rods in the quadratic approximation,” Uch. Zap., Kazan University, Ser. Fiz.-Mat. Nauki, 159, No. 1, 75−87 (2017). V. N. Paimushin and S. A. Kholmogorov, “Consistent equations of the nonlinear theory of straight multilayered rods in the quadratic approximation,” Uch. Zap., Kazan University, Ser. Fiz.-Mat. Nauki, 159, No. 1, 75−87 (2017).
22.
Zurück zum Zitat V. N. Paimushin and S. A. Kholmogorov, “Physical-mechanical properties of a fiber-reinforced composite based on an ELUR-P carbon tape and XT-118 binder,” Mech. Compos. Mater., 54, No. 1, 2−12 (2018).CrossRef V. N. Paimushin and S. A. Kholmogorov, “Physical-mechanical properties of a fiber-reinforced composite based on an ELUR-P carbon tape and XT-118 binder,” Mech. Compos. Mater., 54, No. 1, 2−12 (2018).CrossRef
23.
Zurück zum Zitat V. N. Paimushin, S. A. Kholmogorov, and R. K. Gazizullin, “mechanics of unidirectional fiber-reinforced composites: buckling modes and failure under compression along fibers,” Mech. Compos. Mater., 53, No. 6, 737−752 (2017).CrossRef V. N. Paimushin, S. A. Kholmogorov, and R. K. Gazizullin, “mechanics of unidirectional fiber-reinforced composites: buckling modes and failure under compression along fibers,” Mech. Compos. Mater., 53, No. 6, 737−752 (2017).CrossRef
24.
Zurück zum Zitat Paimushin V. N., N. V. Polykova, S. A. Kholmogorov, and M. A. Shishov, “Buckling modes of structural elements of off-axis fiber-reinforced plastics,” Mech. Compos. Mater., 54, No. 2, 133−144 (2018).CrossRef Paimushin V. N., N. V. Polykova, S. A. Kholmogorov, and M. A. Shishov, “Buckling modes of structural elements of off-axis fiber-reinforced plastics,” Mech. Compos. Mater., 54, No. 2, 133−144 (2018).CrossRef
25.
Zurück zum Zitat V. N. Paimushin, N. V. Polyakova, S. A. Kholmogorov, and M. S. Shishov, “Differentscale buckling modes of reinforcing elements in fiber reinforced plastic,” Izv. Vuz. Matematika, 61, No. 9, 89−95 (2017). V. N. Paimushin, N. V. Polyakova, S. A. Kholmogorov, and M. S. Shishov, “Differentscale buckling modes of reinforcing elements in fiber reinforced plastic,” Izv. Vuz. Matematika, 61, No. 9, 89−95 (2017).
26.
Zurück zum Zitat V. N. Paimushin and N. V. Polyakova, “The consistent equations of the theory of plane curvilinear rods for finite displacements and linearized problems of stability,” J. Appl. Math. Mech., 73, No. 2, 220−236 (2009).CrossRef V. N. Paimushin and N. V. Polyakova, “The consistent equations of the theory of plane curvilinear rods for finite displacements and linearized problems of stability,” J. Appl. Math. Mech., 73, No. 2, 220−236 (2009).CrossRef
27.
Zurück zum Zitat V. N. Paimushin, R. A. Kayumov, S. A. Kholmogorov, “ Deformation features and models of [±45]2s cross-ply fiberreinforced plastics in tension,” Mech. Compos. Mater., 55, No. 2, 141−154 (2019).CrossRef V. N. Paimushin, R. A. Kayumov, S. A. Kholmogorov, “ Deformation features and models of [±45]2s cross-ply fiberreinforced plastics in tension,” Mech. Compos. Mater., 55, No. 2, 141−154 (2019).CrossRef
Metadaten
Titel
Spatial Buckling Modes of a Fiber (Fiber Bundle) of Composites with a [±45]2s Stacking Sequence Under the Tension and Compression of Test Specimens
verfasst von
V. N. Paimushin
R. K. Gazizullin
M. A. Shishov
Publikationsdatum
18.02.2020
Verlag
Springer US
Erschienen in
Mechanics of Composite Materials / Ausgabe 6/2020
Print ISSN: 0191-5665
Elektronische ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-020-09855-9

Weitere Artikel der Ausgabe 6/2020

Mechanics of Composite Materials 6/2020 Zur Ausgabe

VITAUTS TAMUŽS (1935-2019)

Editorial Board

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.