Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 4/2015

01.04.2015 | LCA FOR ENERGY SYSTEMS AND FOOD PRODUCTS

Global warming potential of hydrogen and methane production from renewable electricity via power-to-gas technology

verfasst von: Gerda Reiter, Johannes Lindorfer

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

Power-to-gas technology enables storage of surplus electricity from fluctuating renewable sources such as wind power or photovoltaics, by generating hydrogen (H2) via water electrolysis, with optional methane (CH4) synthesis from carbon dioxide (CO2) and H2; the advantage of the latter is that CH4 can be fed into existing gas infrastructure. This paper presents a life cycle assessment (LCA) of this technological concept, evaluating the main parameters influencing global warming potential (GWP) and primary energy demand.

Methods

The conducted LCA of power-to-gas systems includes the production of H2 or CH4 from cradle to gate. Product utilization was not evaluated but considered qualitatively during interpretation. Material and energy balances were modeled using the LCA software GaBi 5 (PE International). The assessed impacts of H2 and CH4 from power-to-gas were compared to those of reference processes, such as steam reforming of natural gas and crude oil as well as natural gas extraction. Sensitivity analysis was used to evaluate the influence of the type of electricity source, the efficiency of the electrolyzer, and the type of CO2 source used for methanation.

Results and discussion

The ecological performance of both H2 and CH4 produced via power-to-gas strongly depends on the electricity generation source. The assessed impacts of H2 production are only improved if GWP of the utilized electricity does not exceed 190 g CO2 per kWh. Due to reduced efficiency, the assessed impacts of CH4 are higher than that of H2. Thus, the environmental break-even point for CH4 production is 113 g CO2 per kWh if utilized CO2 is treated as a waste product, and 73 g CO2 per kWh if the CO2 separation effort is included. Electricity mix of EU-27 countries is therefore not at all suitable as an input. Utilization of renewable H2 and CH4 in the industry or the transport sector offers substantial reduction potential in GWP and primary energy demand.

Conclusions

H2 and CH4 production through power-to-gas with electricity from renewable sources, such as wind power or photovoltaics, offers substantial potential to reduce GWP and primary energy demand. However, the input of electricity predominately generated from fossil resources leads to a higher environmental impact of H2 and CH4 compared to fossil reference processes and is not recommended. As previously bound CO2 is re-emitted when CH4 is utilized for instance in vehicles, the type of CO2 source and the allocation method have a significant influence on overall ecological performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abbasi T, Abbasi SA (2011) Renewable hydrogen: prospects and challenges. Renew Sust Energ Rev 15(6):3034–3040CrossRef Abbasi T, Abbasi SA (2011) Renewable hydrogen: prospects and challenges. Renew Sust Energ Rev 15(6):3034–3040CrossRef
Zurück zum Zitat Acar C, Dincer I (2014) Comparative assessment of hydrogen production methods from renewable and non-renewable sources. Int J Hydrogen Energy 39:1–12CrossRef Acar C, Dincer I (2014) Comparative assessment of hydrogen production methods from renewable and non-renewable sources. Int J Hydrogen Energy 39:1–12CrossRef
Zurück zum Zitat Anderson D, Leach M (2004) Harvesting and redistributing renewable energy: on the role of gas and electricity grids to overcome intermittency through the generation and storage of hydrogen. Energ Policy 32:1603–1614CrossRef Anderson D, Leach M (2004) Harvesting and redistributing renewable energy: on the role of gas and electricity grids to overcome intermittency through the generation and storage of hydrogen. Energ Policy 32:1603–1614CrossRef
Zurück zum Zitat Bartolozzi I, Rizzi F, Frey M (2013) Comparison between hydrogen and electric vehicles by life cycle assessment: a case study in Tuscany, Italy. Appl Energy 101:103–111CrossRef Bartolozzi I, Rizzi F, Frey M (2013) Comparison between hydrogen and electric vehicles by life cycle assessment: a case study in Tuscany, Italy. Appl Energy 101:103–111CrossRef
Zurück zum Zitat Briguglio N, Andaloro L, Ferraro M, Di Blasi A, Dispenza G, Matteucci F, Breedveld L, Antonucci V (2010) Renewable energy for hydrogen production and sustainable urban mobility. Int J Hydrogen Energy 35:9996–10003CrossRef Briguglio N, Andaloro L, Ferraro M, Di Blasi A, Dispenza G, Matteucci F, Breedveld L, Antonucci V (2010) Renewable energy for hydrogen production and sustainable urban mobility. Int J Hydrogen Energy 35:9996–10003CrossRef
Zurück zum Zitat Cetinkaya E, Dincer I, Naterer GF (2012) Life cycle assessment of various hydrogen production methods. Int J Hydrogen Energy 37:2071–2080CrossRef Cetinkaya E, Dincer I, Naterer GF (2012) Life cycle assessment of various hydrogen production methods. Int J Hydrogen Energy 37:2071–2080CrossRef
Zurück zum Zitat Chapel DG, Mariz CL, Ernest J (1999) Recovery of CO2 from flue gases: commercial trends. Annual Meeting of the Canadian Society of Chemical Engineers, Canada Chapel DG, Mariz CL, Ernest J (1999) Recovery of CO2 from flue gases: commercial trends. Annual Meeting of the Canadian Society of Chemical Engineers, Canada
Zurück zum Zitat Cover AE, Hubbard DA, Jain SK, Shah KV, Koneru PB, Wong EW (1985) Review of selected shift and methanation processes for SNG production. Kellogg Rust Synfuels Inc., Texas Cover AE, Hubbard DA, Jain SK, Shah KV, Koneru PB, Wong EW (1985) Review of selected shift and methanation processes for SNG production. Kellogg Rust Synfuels Inc., Texas
Zurück zum Zitat De Bruijn H, van Duin R, Huijbregts MAJ (2002) Handbook on life cycle assessment: operational guide to the ISO standards. Series: eco-efficiency in industry and science. Kluwer Academic, Dordrecht De Bruijn H, van Duin R, Huijbregts MAJ (2002) Handbook on life cycle assessment: operational guide to the ISO standards. Series: eco-efficiency in industry and science. Kluwer Academic, Dordrecht
Zurück zum Zitat De Koeijer G, Enge Y, Sanden K, Graff OF, Falk-Pedersen O, Amundsen T, Overa S (2011) CO2 Technology Centre Mongstad—design, functionality and emissions of the amine plant. Energy Procedia 4:1207–1213CrossRef De Koeijer G, Enge Y, Sanden K, Graff OF, Falk-Pedersen O, Amundsen T, Overa S (2011) CO2 Technology Centre Mongstad—design, functionality and emissions of the amine plant. Energy Procedia 4:1207–1213CrossRef
Zurück zum Zitat Desideri U, Paolucci A (1999) Performance modelling of a carbon dioxide removal system for power plants. Energy Convers Manag 40:1899–1915CrossRef Desideri U, Paolucci A (1999) Performance modelling of a carbon dioxide removal system for power plants. Energy Convers Manag 40:1899–1915CrossRef
Zurück zum Zitat Dickinson RR, Battye DL, Linton VM, Ashman PJ, Nathan GJ (2010) Alternative carriers for remote renewable energy sources using existing CNG infrastructure. Int J Hydrogen Energy 35:1321–1329CrossRef Dickinson RR, Battye DL, Linton VM, Ashman PJ, Nathan GJ (2010) Alternative carriers for remote renewable energy sources using existing CNG infrastructure. Int J Hydrogen Energy 35:1321–1329CrossRef
Zurück zum Zitat Dufour J, Serrano DP, Galvez JL, Moreno J, Garcia C (2009) Life cycle assessment of processes for hydrogen production. Environmental feasibility and reduction of greenhouse gases emissions. Int J Hydrogen Energy 34:1370–1376CrossRef Dufour J, Serrano DP, Galvez JL, Moreno J, Garcia C (2009) Life cycle assessment of processes for hydrogen production. Environmental feasibility and reduction of greenhouse gases emissions. Int J Hydrogen Energy 34:1370–1376CrossRef
Zurück zum Zitat Edwards R, Larivé JF, Beziat JC (2011) Well-to-wheel analysis of future automotive fuels and power trains in the European context. Report version 3c. European Commission, Joint Research Center, Institute for Energy and Transport, Luxembourg. doi:10.2788/79018. Edwards R, Larivé JF, Beziat JC (2011) Well-to-wheel analysis of future automotive fuels and power trains in the European context. Report version 3c. European Commission, Joint Research Center, Institute for Energy and Transport, Luxembourg. doi:10.​2788/​79018.
Zurück zum Zitat Gahleitner G (2013) Hydrogen from renewable electricity: an international review of power to gas pilot plants for stationary applications. Int J Hydrogen Energy 38(5):2039–2061CrossRef Gahleitner G (2013) Hydrogen from renewable electricity: an international review of power to gas pilot plants for stationary applications. Int J Hydrogen Energy 38(5):2039–2061CrossRef
Zurück zum Zitat Guinee JB, Gorree M, Heijungs R, Huppes G, Kleijn R, de Koning A (2001) Handbook on life cycle assessment. Operational guide to the ISO standards. Kluwer Academic, Dordrecht Guinee JB, Gorree M, Heijungs R, Huppes G, Kleijn R, de Koning A (2001) Handbook on life cycle assessment. Operational guide to the ISO standards. Kluwer Academic, Dordrecht
Zurück zum Zitat IPCC, Intergovernmental Panel on Climate Change (2007) Climate change: synthesis report. IPCC, Geneva, p 104 IPCC, Intergovernmental Panel on Climate Change (2007) Climate change: synthesis report. IPCC, Geneva, p 104
Zurück zum Zitat ISO 13686:1998 Natural gas—quality designation. International Organization for Standardization, Geneva, Switzerland ISO 13686:1998 Natural gas—quality designation. International Organization for Standardization, Geneva, Switzerland
Zurück zum Zitat ISO 14040:2006 Environmental management—life cycle assessment—principles & framework. International Organization for Standardization, Geneva, Switzerland ISO 14040:2006 Environmental management—life cycle assessment—principles & framework. International Organization for Standardization, Geneva, Switzerland
Zurück zum Zitat ISO 14044:2006 Environmental management—life cycle assessment—requirements and guidelines. International Organization for Standardization, Geneva, Switzerland ISO 14044:2006 Environmental management—life cycle assessment—requirements and guidelines. International Organization for Standardization, Geneva, Switzerland
Zurück zum Zitat Klöpffer W, Grahl B (2011) Ökobilanz (LCA): Ein Leitfaden für Ausbildung und Beruf. (Life cycle assessment: a guide for education and profession). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. ISBN 978-3-527-32043-1 Klöpffer W, Grahl B (2011) Ökobilanz (LCA): Ein Leitfaden für Ausbildung und Beruf. (Life cycle assessment: a guide for education and profession). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. ISBN 978-3-527-32043-1
Zurück zum Zitat Kothandaraman A, Nord L, Bolland O, Herzog HJ, McRae GJ (2009) Comparison of solvents for post-combustion capture of CO2 by chemical absorption. Energy Procedia 1:1373–1380CrossRef Kothandaraman A, Nord L, Bolland O, Herzog HJ, McRae GJ (2009) Comparison of solvents for post-combustion capture of CO2 by chemical absorption. Energy Procedia 1:1373–1380CrossRef
Zurück zum Zitat Lee JY, An S, Cha K, Hur T (2010) Life cycle environmental and economic analyses of a hydrogen station with wind energy. Int J Hydrogen Energy 35:2213–2225CrossRef Lee JY, An S, Cha K, Hur T (2010) Life cycle environmental and economic analyses of a hydrogen station with wind energy. Int J Hydrogen Energy 35:2213–2225CrossRef
Zurück zum Zitat Lee JY, Cha KH, Lim TW, Hur T (2011) Eco-efficiency of H2 and fuel cell buses. Int J Hydrogen Energy 36:1754–1765CrossRef Lee JY, Cha KH, Lim TW, Hur T (2011) Eco-efficiency of H2 and fuel cell buses. Int J Hydrogen Energy 36:1754–1765CrossRef
Zurück zum Zitat Ludwig Bölkow Systemtechnik. Hydrogen filling stations worldwide. http://www.h2stations.org. Accessed 17 Dec 2012 Ludwig Bölkow Systemtechnik. Hydrogen filling stations worldwide. http://​www.​h2stations.​org.​ Accessed 17 Dec 2012
Zurück zum Zitat Maclay JD, Brouwer J, Samuelsen GS (2011) Experimental results for hybrid energy storage systems coupled to photovoltaic generation in residential applications. Int J Hydrogen Energy 36(19):12130–12140CrossRef Maclay JD, Brouwer J, Samuelsen GS (2011) Experimental results for hybrid energy storage systems coupled to photovoltaic generation in residential applications. Int J Hydrogen Energy 36(19):12130–12140CrossRef
Zurück zum Zitat Mangalapally HP, Hasse H (2011) Pilot plant experiments for post combustion carbon dioxide capture by reactive absorption with novel solvents. Energy Procedia 4:1–8CrossRef Mangalapally HP, Hasse H (2011) Pilot plant experiments for post combustion carbon dioxide capture by reactive absorption with novel solvents. Energy Procedia 4:1–8CrossRef
Zurück zum Zitat Margni M, Curran MA (2012) Life cycle impact assessment. In: Curran MA (ed) Life cycle assessment handbook. A guide for environmentally sustainable products. Wiley Margni M, Curran MA (2012) Life cycle impact assessment. In: Curran MA (ed) Life cycle assessment handbook. A guide for environmentally sustainable products. Wiley
Zurück zum Zitat Metz B, Davidson O, de Coninck H, Loos M, Meyer L (2006) IPCC special report on carbon dioxide capture and storage. Cambridge University Press Metz B, Davidson O, de Coninck H, Loos M, Meyer L (2006) IPCC special report on carbon dioxide capture and storage. Cambridge University Press
Zurück zum Zitat Mills GA, Steffgen FW (1974) Catalytic methanation. Catal Rev 8(1):159–210CrossRef Mills GA, Steffgen FW (1974) Catalytic methanation. Catal Rev 8(1):159–210CrossRef
Zurück zum Zitat Müller B, Müller K, Teichmann D, Arlt W (2011) Energiespeicherung mittels Methan und energietragenden Stoffen – ein thermodynamischer Vergleich. Chem-Ing-Tech 83(II):2002–2013 Müller B, Müller K, Teichmann D, Arlt W (2011) Energiespeicherung mittels Methan und energietragenden Stoffen – ein thermodynamischer Vergleich. Chem-Ing-Tech 83(II):2002–2013
Zurück zum Zitat Rönsch S, Ortwein A (2011) Methanisierung von Synthesegasen - Grundlagen und Verfahrensentwicklungen. (Methanation of synthetic gas—fundamentals and process development). Chem-Ing-Tech 83(8):1200–1208CrossRef Rönsch S, Ortwein A (2011) Methanisierung von Synthesegasen - Grundlagen und Verfahrensentwicklungen. (Methanation of synthetic gas—fundamentals and process development). Chem-Ing-Tech 83(8):1200–1208CrossRef
Zurück zum Zitat Rubin ES, Mantripragada H, Marks A, Versteeg P, Kitchin J (2012) The outlook for improved carbon capture technology. Prog Energy Combust 38:630–671CrossRef Rubin ES, Mantripragada H, Marks A, Versteeg P, Kitchin J (2012) The outlook for improved carbon capture technology. Prog Energy Combust 38:630–671CrossRef
Zurück zum Zitat Sehested J, Dahl S, Jacobsen J, Rostrup-Nielsen JR (2005) Methanation of CO over nickel: mechanism and kinetics at high H2/CO ratios. J Phys Chem B 109:2432–2438CrossRef Sehested J, Dahl S, Jacobsen J, Rostrup-Nielsen JR (2005) Methanation of CO over nickel: mechanism and kinetics at high H2/CO ratios. J Phys Chem B 109:2432–2438CrossRef
Zurück zum Zitat Smitkova M, Janicek F, Riccardi J (2011) Life cycle analysis of processes for hydrogen production. Int J Hydrogen Energy 36:7844–7851CrossRef Smitkova M, Janicek F, Riccardi J (2011) Life cycle analysis of processes for hydrogen production. Int J Hydrogen Energy 36:7844–7851CrossRef
Zurück zum Zitat Sterner M (2009) Bioenergy and renewable power methane in integrated 100 % renewable energy systems. Dissertation, Kassel University Sterner M (2009) Bioenergy and renewable power methane in integrated 100 % renewable energy systems. Dissertation, Kassel University
Zurück zum Zitat Ulleberg O, Nakken T, Ete A (2010) The wind/hydrogen demonstration system at Utsira in Norway: evaluation of system performance using operational data and updated hydrogen energy system modeling tools. Int J Hydrogen Energy 35:1841–1852CrossRef Ulleberg O, Nakken T, Ete A (2010) The wind/hydrogen demonstration system at Utsira in Norway: evaluation of system performance using operational data and updated hydrogen energy system modeling tools. Int J Hydrogen Energy 35:1841–1852CrossRef
Zurück zum Zitat Ursua A, Gandia LM, Sanchis P (2012) Hydrogen production from water electrolysis: current status and future trends. Proc IEEE 100(2):410–426CrossRef Ursua A, Gandia LM, Sanchis P (2012) Hydrogen production from water electrolysis: current status and future trends. Proc IEEE 100(2):410–426CrossRef
Zurück zum Zitat Verein Deutscher Ingenieure e.V. (2012) VDI-Richtline 4600: cumulative energy demand (KEA)—terms, conditions, methods of calculation. VDI, Düsseldorf Verein Deutscher Ingenieure e.V. (2012) VDI-Richtline 4600: cumulative energy demand (KEA)—terms, conditions, methods of calculation. VDI, Düsseldorf
Zurück zum Zitat Von der Assen N, Jung J, Bardow A (2013) Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls. Energy Environ Sci 6:2721–2734CrossRef Von der Assen N, Jung J, Bardow A (2013) Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls. Energy Environ Sci 6:2721–2734CrossRef
Zurück zum Zitat Wietschel M, Hasenauer U, de Groot A (2006) Development of European hydrogen infrastructure scenarios—CO2 reduction potential and infrastructure investment. Energ Policy 34:1284–1298CrossRef Wietschel M, Hasenauer U, de Groot A (2006) Development of European hydrogen infrastructure scenarios—CO2 reduction potential and infrastructure investment. Energ Policy 34:1284–1298CrossRef
Zurück zum Zitat Wulf C, Kaltschmitt M (2012) Life cycle assessment of hydrogen supply chain with special attention on hydrogen refueling stations. Int J Hydrogen Energy 37:16711–16721CrossRef Wulf C, Kaltschmitt M (2012) Life cycle assessment of hydrogen supply chain with special attention on hydrogen refueling stations. Int J Hydrogen Energy 37:16711–16721CrossRef
Metadaten
Titel
Global warming potential of hydrogen and methane production from renewable electricity via power-to-gas technology
verfasst von
Gerda Reiter
Johannes Lindorfer
Publikationsdatum
01.04.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 4/2015
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-015-0848-0

Weitere Artikel der Ausgabe 4/2015

The International Journal of Life Cycle Assessment 4/2015 Zur Ausgabe