Skip to main content
Erschienen in: Meccanica 1-2/2018

16.06.2017

Steric effects on electroosmotic flow in soft nanochannels

verfasst von: Jingnan Xing, Yongjun Jian

Erschienen in: Meccanica | Ausgabe 1-2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A numerical solution is derived of the mixed pressure and electroosmotically driven flow in a soft nanochannel considering the steric effect within electric double layer. The electric potential and the velocity distributions are described by the modified Poisson–Boltzmann equation and the modified Navier–Stokes equation under the conditions of boundary slip and constant charge density on the walls. By  using the finite difference method, the numerical solutions of the electric potential, velocity and the volumetric flow rate are obtained. Results show that the electric potential increases with the steric parameter. The velocity decreases with the steric parameter for lower surface charge density, while opposite trend can be found for higher surface charge density. We compare the results of soft and rigid nanochannels and find the velocity in the soft nanochannel is larger than that in the rigid one except for the case of higher surface charge density.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a- chip. Ann Rev Fluid Mech 36:381–411ADSCrossRefMATH Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a- chip. Ann Rev Fluid Mech 36:381–411ADSCrossRefMATH
2.
Zurück zum Zitat Erickson D, Li D (2004) Integrated microfluidic devices. Anal Chim Acta 507:11–26CrossRef Erickson D, Li D (2004) Integrated microfluidic devices. Anal Chim Acta 507:11–26CrossRef
3.
Zurück zum Zitat Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. J Rev Mod Phys 77:977–1026ADSCrossRef Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. J Rev Mod Phys 77:977–1026ADSCrossRef
4.
Zurück zum Zitat Buren M, Jian YJ, Chang L (2014) Electromagnetohydrodynamic flow through a microparallel channel with corrugated walls. J Phys D Appl Phys 47:425501ADSCrossRef Buren M, Jian YJ, Chang L (2014) Electromagnetohydrodynamic flow through a microparallel channel with corrugated walls. J Phys D Appl Phys 47:425501ADSCrossRef
5.
Zurück zum Zitat Si DQ, Jian YJ (2015) Electromagnetohydrodynamic (EMHD) micropump of Jeffreyfluids through two parallel microchannels walls with corrugated. J Phys D Appl Phys 48:085501ADSCrossRef Si DQ, Jian YJ (2015) Electromagnetohydrodynamic (EMHD) micropump of Jeffreyfluids through two parallel microchannels walls with corrugated. J Phys D Appl Phys 48:085501ADSCrossRef
6.
Zurück zum Zitat Becker H, Gartner C (2000) Polymer microfabrication methods for microfluidicanalytical applications. Electrophoresis 21:12–26CrossRef Becker H, Gartner C (2000) Polymer microfabrication methods for microfluidicanalytical applications. Electrophoresis 21:12–26CrossRef
7.
Zurück zum Zitat Ghosal S (2002) Lubrication theory for electro-osmotic flow in a microfluidic channel of slowly varying cross- section and wall charge. J Fluid Mech 459:103–128ADSCrossRefMATH Ghosal S (2002) Lubrication theory for electro-osmotic flow in a microfluidic channel of slowly varying cross- section and wall charge. J Fluid Mech 459:103–128ADSCrossRefMATH
8.
Zurück zum Zitat Sadr R, Yoda M, Zheng Z, Conlisk AT (2004) An experimental study of electro-osmotic flow in rectangular microchannels. J Fluid Mech 506:357–367ADSCrossRefMATH Sadr R, Yoda M, Zheng Z, Conlisk AT (2004) An experimental study of electro-osmotic flow in rectangular microchannels. J Fluid Mech 506:357–367ADSCrossRefMATH
9.
Zurück zum Zitat Das S, Chakraborty S (2006) Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows in a non-Newtonian bio-fluid. Anal Chim Acta 559:15–24CrossRef Das S, Chakraborty S (2006) Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows in a non-Newtonian bio-fluid. Anal Chim Acta 559:15–24CrossRef
10.
Zurück zum Zitat Xie ZY, Jian YJ (2014) Rotating electroosmotic flow of power-law fluids at high zeta potentials. Colloids Surf A Physicochem Eng Asp 461:231–239CrossRef Xie ZY, Jian YJ (2014) Rotating electroosmotic flow of power-law fluids at high zeta potentials. Colloids Surf A Physicochem Eng Asp 461:231–239CrossRef
11.
Zurück zum Zitat Jian YJ, Su J, Chang L, Liu QS, He GW (2014) Transient electroosmotic flow of general Maxwell fluids through a slit microchannel. Z Angew Math Phys 65:435–447MathSciNetCrossRefMATH Jian YJ, Su J, Chang L, Liu QS, He GW (2014) Transient electroosmotic flow of general Maxwell fluids through a slit microchannel. Z Angew Math Phys 65:435–447MathSciNetCrossRefMATH
12.
Zurück zum Zitat Buren MDL, Jian YJ, Chang L (2014) Electromagnetohydrodynamic flow through a microparallel channel with corrugated walls. J Phys D Appl Phys 47:425501ADSCrossRef Buren MDL, Jian YJ, Chang L (2014) Electromagnetohydrodynamic flow through a microparallel channel with corrugated walls. J Phys D Appl Phys 47:425501ADSCrossRef
13.
Zurück zum Zitat Zhao GP, Jian YJ, Chang L, Buren MDL (2015) Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field. J Magn Magn Mater 387:111–117ADSCrossRef Zhao GP, Jian YJ, Chang L, Buren MDL (2015) Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field. J Magn Magn Mater 387:111–117ADSCrossRef
14.
Zurück zum Zitat Xing JN, Jian YJ (2016) Electrokineticenergy conversion efficiency inrectangular nanochannels. Appl Math Mech 37:363–372 Xing JN, Jian YJ (2016) Electrokineticenergy conversion efficiency inrectangular nanochannels. Appl Math Mech 37:363–372
15.
Zurück zum Zitat Ma HC, Keh HJ (2007) Diffusioosmosis of electrolyte solutions in a capillary slit with adsorbed polyelectrolyte layers. J Colloid Interface Sci 313:686–696ADSCrossRef Ma HC, Keh HJ (2007) Diffusioosmosis of electrolyte solutions in a capillary slit with adsorbed polyelectrolyte layers. J Colloid Interface Sci 313:686–696ADSCrossRef
16.
Zurück zum Zitat Qu WL, Gh MM, Li DQ (2000) Pressure-driven water flows in trapezoidal silicon microchannels. Int J Heat Mass Transf 43:353–364CrossRefMATH Qu WL, Gh MM, Li DQ (2000) Pressure-driven water flows in trapezoidal silicon microchannels. Int J Heat Mass Transf 43:353–364CrossRefMATH
17.
18.
Zurück zum Zitat Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110:1518–1563CrossRef Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110:1518–1563CrossRef
19.
Zurück zum Zitat Yang RJ, Fu LM, Lin YC (2001) Electroosmotic flow in microchannels. J Colloid Interface Sci 239:98–105ADSCrossRef Yang RJ, Fu LM, Lin YC (2001) Electroosmotic flow in microchannels. J Colloid Interface Sci 239:98–105ADSCrossRef
20.
Zurück zum Zitat Xuan XC, Li DQ (2005) Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge. J Colloid Interface Sci 289:291–303ADSCrossRef Xuan XC, Li DQ (2005) Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge. J Colloid Interface Sci 289:291–303ADSCrossRef
21.
Zurück zum Zitat Jian YJ, Yang LG, Liu QS (2010) Time periodic electroosmotic flow through a microannulus. Phys Fluids 22:04200CrossRef Jian YJ, Yang LG, Liu QS (2010) Time periodic electroosmotic flow through a microannulus. Phys Fluids 22:04200CrossRef
22.
Zurück zum Zitat Bera S, Bhattacharyya S (2013) On mixed electroosmotic-pressure driven flow and mass transport in microchannels. Int J Eng Sci 62:165–176MathSciNetCrossRef Bera S, Bhattacharyya S (2013) On mixed electroosmotic-pressure driven flow and mass transport in microchannels. Int J Eng Sci 62:165–176MathSciNetCrossRef
23.
Zurück zum Zitat Ganguly S, Sarkar S, Hota TK, Mishra M (2015) Thermally developing combined electroosmotic and pressure-driven flow of nanofluids in a microchannel under the effect of magnetic field. Chem Eng Sci 126:10–21CrossRef Ganguly S, Sarkar S, Hota TK, Mishra M (2015) Thermally developing combined electroosmotic and pressure-driven flow of nanofluids in a microchannel under the effect of magnetic field. Chem Eng Sci 126:10–21CrossRef
24.
Zurück zum Zitat Donath E, Voigt A (1986) Steaming current and streaming potential on structured surfaces. J Colloid Interface Sci 109:122–139ADSCrossRef Donath E, Voigt A (1986) Steaming current and streaming potential on structured surfaces. J Colloid Interface Sci 109:122–139ADSCrossRef
25.
Zurück zum Zitat Chanda S, Sinha S, Das S (2014) Steaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters. Soft Matter 10:7558–7568ADSCrossRef Chanda S, Sinha S, Das S (2014) Steaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters. Soft Matter 10:7558–7568ADSCrossRef
26.
Zurück zum Zitat Matin MH, Ohshima H (2015) Combined electroosmotically and pressure driven flow in soft nanofluidics. J Colloid Interface Sci 460:361–369ADSCrossRef Matin MH, Ohshima H (2015) Combined electroosmotically and pressure driven flow in soft nanofluidics. J Colloid Interface Sci 460:361–369ADSCrossRef
27.
Zurück zum Zitat Poddar A, Maity D, Bandopadhyay A, Chakraborty S (2016) Electrokinetics in polyelectrolyte grafted nanofluidic channels modulated by the ion partitioning effect. Soft Matter 12:5968–5978ADSCrossRef Poddar A, Maity D, Bandopadhyay A, Chakraborty S (2016) Electrokinetics in polyelectrolyte grafted nanofluidic channels modulated by the ion partitioning effect. Soft Matter 12:5968–5978ADSCrossRef
28.
Zurück zum Zitat Kilic MS, Bazant MZ, Ajdari A (2007) Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys Rev E 75:021502ADSCrossRef Kilic MS, Bazant MZ, Ajdari A (2007) Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys Rev E 75:021502ADSCrossRef
29.
Zurück zum Zitat Yazdi AA, Sadeghi A, Saidi MH (2015) Steric effects on electrokinetic flow of non-linear biofluids. Colloids Surf A Physicochem Eng Asp 484:394–401CrossRef Yazdi AA, Sadeghi A, Saidi MH (2015) Steric effects on electrokinetic flow of non-linear biofluids. Colloids Surf A Physicochem Eng Asp 484:394–401CrossRef
30.
Zurück zum Zitat Garai A, Chakraborty S (2010) Steric effect and slip-modulated energy transfer in narrow fluidic channels with finite aspect ratios. Electrophoresis 31:843–849CrossRef Garai A, Chakraborty S (2010) Steric effect and slip-modulated energy transfer in narrow fluidic channels with finite aspect ratios. Electrophoresis 31:843–849CrossRef
31.
Zurück zum Zitat Bandopadhyay A, Chakraborty S (2011) Steric-effect induced alterations in streaming potential and energy transfer efficiency of non-Newtonian fluids in narrow confinements. Langmuir 27:12243–12252CrossRef Bandopadhyay A, Chakraborty S (2011) Steric-effect induced alterations in streaming potential and energy transfer efficiency of non-Newtonian fluids in narrow confinements. Langmuir 27:12243–12252CrossRef
32.
Zurück zum Zitat Chen G, Das S (2015) Streaming potential and electroviscous effects in soft nanochannels beyond Debye–Hückel linearization. J Colloid Interface Sci 445:357–363ADSCrossRef Chen G, Das S (2015) Streaming potential and electroviscous effects in soft nanochannels beyond Debye–Hückel linearization. J Colloid Interface Sci 445:357–363ADSCrossRef
33.
Zurück zum Zitat Wu C, Ma G, Zhou P (2008) A review of the study on the boundary slip problems of fluid flow. Adv Mech 38:265–282 Wu C, Ma G, Zhou P (2008) A review of the study on the boundary slip problems of fluid flow. Adv Mech 38:265–282
34.
Zurück zum Zitat Nagayama G, Cheng P (2004) Effects of interface wettability on microscale flow by molecular dynamics simulation. J Heat Mass Transfer 47:501–513CrossRefMATH Nagayama G, Cheng P (2004) Effects of interface wettability on microscale flow by molecular dynamics simulation. J Heat Mass Transfer 47:501–513CrossRefMATH
35.
Zurück zum Zitat Joly L, Ybert C, Trizac E, Bocquet L (2006) Liquid friction on charged surfaces: from hydrodynamic slippage to electrokinetics. J Chem Phys 125:204716ADSCrossRef Joly L, Ybert C, Trizac E, Bocquet L (2006) Liquid friction on charged surfaces: from hydrodynamic slippage to electrokinetics. J Chem Phys 125:204716ADSCrossRef
36.
Zurück zum Zitat Chanda S, Das S (2014) Effect of finite ion sizes in an electrostatic potential distribution for a charged soft surface in contact with an electrolyte solution. Phys Rev E 89:012307ADSCrossRef Chanda S, Das S (2014) Effect of finite ion sizes in an electrostatic potential distribution for a charged soft surface in contact with an electrolyte solution. Phys Rev E 89:012307ADSCrossRef
37.
Zurück zum Zitat Srinivas B (2016) Electroosmotic flow of a power law fluid in an elliptic microchannell. Colloids Surf A Physicochem Eng Aspects 492:144–151CrossRef Srinivas B (2016) Electroosmotic flow of a power law fluid in an elliptic microchannell. Colloids Surf A Physicochem Eng Aspects 492:144–151CrossRef
38.
Zurück zum Zitat Das S, Chakraborty S (2011) Steric-effect-induced enhancement of electrical-double-layer overlapping phenomena. Phys Rev E 84:012501ADSCrossRef Das S, Chakraborty S (2011) Steric-effect-induced enhancement of electrical-double-layer overlapping phenomena. Phys Rev E 84:012501ADSCrossRef
39.
Zurück zum Zitat Sauer T (2012) Numerical analysis, 2nd edn. Pearson Education Inc, New YorkMATH Sauer T (2012) Numerical analysis, 2nd edn. Pearson Education Inc, New YorkMATH
Metadaten
Titel
Steric effects on electroosmotic flow in soft nanochannels
verfasst von
Jingnan Xing
Yongjun Jian
Publikationsdatum
16.06.2017
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 1-2/2018
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-017-0703-4

Weitere Artikel der Ausgabe 1-2/2018

Meccanica 1-2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.