Skip to main content
Erschienen in: Acta Mechanica Sinica 1/2018

19.10.2017 | Research Paper

Strain-rate effect on initial crush stress of irregular honeycomb under dynamic loading and its deformation mechanism

verfasst von: Peng Wang, Zhijun Zheng, Shenfei Liao, Jilin Yu

Erschienen in: Acta Mechanica Sinica | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored. The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties, 2nd edn. Cambridge University Press, Cambridge (1997)CrossRefMATH Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties, 2nd edn. Cambridge University Press, Cambridge (1997)CrossRefMATH
2.
Zurück zum Zitat Lu, G.X., Yu, T.X.: Energy Absorption of Structures and Materials. Woodhead Publishing Ltd, Cambridge (2003)CrossRef Lu, G.X., Yu, T.X.: Energy Absorption of Structures and Materials. Woodhead Publishing Ltd, Cambridge (2003)CrossRef
3.
Zurück zum Zitat Maiti, S.K., Gibson, L.J., Ashby, M.F.: Deformation and energy absorption diagrams for cellular solids. Acta Metall. 32, 1963–1975 (1984)CrossRef Maiti, S.K., Gibson, L.J., Ashby, M.F.: Deformation and energy absorption diagrams for cellular solids. Acta Metall. 32, 1963–1975 (1984)CrossRef
4.
Zurück zum Zitat Tang, L.Q., Shi, X.P., Zhang, L., et al.: Effects of statistics of cell’s size and shape irregularity on mechanical properties of 2D and 3D Voronoi foams. Acta Mech. 225, 1361–1372 (2014)CrossRefMATH Tang, L.Q., Shi, X.P., Zhang, L., et al.: Effects of statistics of cell’s size and shape irregularity on mechanical properties of 2D and 3D Voronoi foams. Acta Mech. 225, 1361–1372 (2014)CrossRefMATH
5.
Zurück zum Zitat Song, Y.Z., Wang, Z.H., Zhao, L.M., et al.: Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model. Mater. Des. 31, 4281–4289 (2010)CrossRef Song, Y.Z., Wang, Z.H., Zhao, L.M., et al.: Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model. Mater. Des. 31, 4281–4289 (2010)CrossRef
6.
Zurück zum Zitat Hanssen, A.G., Hopperstad, O.S., Langseth, M., et al.: Validation of constitutive models applicable to aluminum foams. Int. J. Mech. Sci. 44, 359–406 (2002)CrossRef Hanssen, A.G., Hopperstad, O.S., Langseth, M., et al.: Validation of constitutive models applicable to aluminum foams. Int. J. Mech. Sci. 44, 359–406 (2002)CrossRef
7.
Zurück zum Zitat Liu, Q.L., Subhash, G.: A phenomenological constitutive model for foams under large deformations. Polym. Eng. Sci. 44, 463–473 (2004)CrossRef Liu, Q.L., Subhash, G.: A phenomenological constitutive model for foams under large deformations. Polym. Eng. Sci. 44, 463–473 (2004)CrossRef
8.
Zurück zum Zitat Reid, S.R., Peng, C.: Dynamic uniaxial crushing of wood. Int. J. Impact Eng. 19, 531–570 (1997)CrossRef Reid, S.R., Peng, C.: Dynamic uniaxial crushing of wood. Int. J. Impact Eng. 19, 531–570 (1997)CrossRef
9.
Zurück zum Zitat Li, Q.M., Meng, H.: Attenuation or enhancement—a one-dimensional analysis on shock transmission in the solid phase of a cellular material. Int. J. Impact Eng. 27, 1049–1065 (2002)CrossRef Li, Q.M., Meng, H.: Attenuation or enhancement—a one-dimensional analysis on shock transmission in the solid phase of a cellular material. Int. J. Impact Eng. 27, 1049–1065 (2002)CrossRef
10.
Zurück zum Zitat Harrigan, J.J., Reid, S.R., Tan, P.J., et al.: High rate crushing of wood along the grain. Int. J. Mech. Sci. 47, 521–544 (2005)CrossRef Harrigan, J.J., Reid, S.R., Tan, P.J., et al.: High rate crushing of wood along the grain. Int. J. Mech. Sci. 47, 521–544 (2005)CrossRef
11.
Zurück zum Zitat Tan, P.J., Reid, S.R., Harrigan, J.J., et al.: Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations. J. Mech. Phys. Solids 53, 2174–2205 (2005)CrossRef Tan, P.J., Reid, S.R., Harrigan, J.J., et al.: Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations. J. Mech. Phys. Solids 53, 2174–2205 (2005)CrossRef
12.
Zurück zum Zitat Zhao, H., Elnasri, I., Li, H.J.: The mechanism of strength enhancement under impact loading of cellular materials. Adv. Eng. Mater. 8, 877–883 (2006)CrossRef Zhao, H., Elnasri, I., Li, H.J.: The mechanism of strength enhancement under impact loading of cellular materials. Adv. Eng. Mater. 8, 877–883 (2006)CrossRef
13.
Zurück zum Zitat Elnasri, I., Pattofatto, S., Zhao, H., et al.: Shock enhancement of cellular structures under impact loading: Part I experiments. J. Mech. Phys. Solids 55, 2652–2671 (2007)CrossRef Elnasri, I., Pattofatto, S., Zhao, H., et al.: Shock enhancement of cellular structures under impact loading: Part I experiments. J. Mech. Phys. Solids 55, 2652–2671 (2007)CrossRef
14.
Zurück zum Zitat Pattofatto, S., Einasri, I., Zhao, H., et al.: Shock enhancement of cellular structures under impact loading: Part II analysis. J. Mech. Phys. Solids 55, 2672–2686 (2007)CrossRef Pattofatto, S., Einasri, I., Zhao, H., et al.: Shock enhancement of cellular structures under impact loading: Part II analysis. J. Mech. Phys. Solids 55, 2672–2686 (2007)CrossRef
15.
Zurück zum Zitat Ma, G.W., Ye, Z.Q., Shao, Z.S.: Modeling loading rate effect on crushing stress of metallic cellular materials. Int. J. Impact Eng. 36, 775–782 (2009)CrossRef Ma, G.W., Ye, Z.Q., Shao, Z.S.: Modeling loading rate effect on crushing stress of metallic cellular materials. Int. J. Impact Eng. 36, 775–782 (2009)CrossRef
16.
Zurück zum Zitat Hu, L.L., Yu, T.X.: Dynamic crushing strength of hexagonal honeycombs. Int. J. Impact Eng. 37, 467–474 (2010)CrossRef Hu, L.L., Yu, T.X.: Dynamic crushing strength of hexagonal honeycombs. Int. J. Impact Eng. 37, 467–474 (2010)CrossRef
17.
Zurück zum Zitat Tan, P.J., Harrigan, J.J., Reid, S.R.: Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam. Mater. Sci. Technol. 18, 480–488 (2002)CrossRef Tan, P.J., Harrigan, J.J., Reid, S.R.: Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam. Mater. Sci. Technol. 18, 480–488 (2002)CrossRef
18.
Zurück zum Zitat Zou, Z., Reid, S.R., Tan, P.J., et al.: Dynamic crushing of honeycombs and features of shock fronts. Int. J. Impact Eng. 36, 165–176 (2009)CrossRef Zou, Z., Reid, S.R., Tan, P.J., et al.: Dynamic crushing of honeycombs and features of shock fronts. Int. J. Impact Eng. 36, 165–176 (2009)CrossRef
19.
Zurück zum Zitat Liao, S.F., Zheng, Z.J., Yu, J.L.: Dynamic crushing of 2D cellular structures: local strain field and shock wave velocity. Int. J. Impact Eng. 57, 7–16 (2013)CrossRef Liao, S.F., Zheng, Z.J., Yu, J.L.: Dynamic crushing of 2D cellular structures: local strain field and shock wave velocity. Int. J. Impact Eng. 57, 7–16 (2013)CrossRef
20.
Zurück zum Zitat Barnes, A.T., Ravi-Chandar, K., Kyriakides, S., et al.: Dynamic crushing of aluminum foams: part I—experiments. Int. J. Solids Struct. 51, 1631–1645 (2014)CrossRef Barnes, A.T., Ravi-Chandar, K., Kyriakides, S., et al.: Dynamic crushing of aluminum foams: part I—experiments. Int. J. Solids Struct. 51, 1631–1645 (2014)CrossRef
21.
Zurück zum Zitat Zheng, Z.J., Wang, C.F., Yu, J.L., et al.: Dynamic stress–strain states for metal foams using a 3D cellular model. J. Mech. Phys. Solids 72, 93–114 (2014)CrossRef Zheng, Z.J., Wang, C.F., Yu, J.L., et al.: Dynamic stress–strain states for metal foams using a 3D cellular model. J. Mech. Phys. Solids 72, 93–114 (2014)CrossRef
22.
Zurück zum Zitat Dannemann, K.A., Lankford, J.: High strain rate compression of closed-cell aluminium foams. Mater. Sci. Eng. A 293, 157–164 (2000)CrossRef Dannemann, K.A., Lankford, J.: High strain rate compression of closed-cell aluminium foams. Mater. Sci. Eng. A 293, 157–164 (2000)CrossRef
23.
Zurück zum Zitat Wang, P.F., Xu, S.L., Li, Z.B., et al.: Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading. Mater. Sci. Eng. A 620, 253–261 (2015)CrossRef Wang, P.F., Xu, S.L., Li, Z.B., et al.: Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading. Mater. Sci. Eng. A 620, 253–261 (2015)CrossRef
24.
Zurück zum Zitat Deshpand, V.S., Fleck, N.A.: High strain rate compressive behaviour of aluminium alloy foams. Int. J. Impact Eng. 24, 277–298 (2000)CrossRef Deshpand, V.S., Fleck, N.A.: High strain rate compressive behaviour of aluminium alloy foams. Int. J. Impact Eng. 24, 277–298 (2000)CrossRef
25.
Zurück zum Zitat Tan, P.J., Reid, S.R., Harrigan, J.J., et al.: Dynamic compressive strength properties of aluminium foams. Part II—‘shock’ theory and comparison with experimental data and numerical models. J. Mech. Phys. Solids 53, 2206–2230 (2005)CrossRef Tan, P.J., Reid, S.R., Harrigan, J.J., et al.: Dynamic compressive strength properties of aluminium foams. Part II—‘shock’ theory and comparison with experimental data and numerical models. J. Mech. Phys. Solids 53, 2206–2230 (2005)CrossRef
26.
Zurück zum Zitat Lopatnikov, S.L., Gama, B.A., Haque, M.J., et al.: Dynamics of metal foam deformation during Taylor cylinder–Hopkinson bar impact experiment. Compos. Struct. 61, 61–71 (2003)CrossRef Lopatnikov, S.L., Gama, B.A., Haque, M.J., et al.: Dynamics of metal foam deformation during Taylor cylinder–Hopkinson bar impact experiment. Compos. Struct. 61, 61–71 (2003)CrossRef
27.
Zurück zum Zitat Lopatnikov, S.L., Gama, B.A., Haque, M.J., et al.: High-velocity plate impact of metal foams. Int. J. Impact Eng 30, 421–445 (2004)CrossRef Lopatnikov, S.L., Gama, B.A., Haque, M.J., et al.: High-velocity plate impact of metal foams. Int. J. Impact Eng 30, 421–445 (2004)CrossRef
28.
Zurück zum Zitat Lopatnikov, S.L., Gama, B.A., Gillespie, J.W.: Modeling the progressive collapse behavior of metal foams. Int. J. Impact Eng. 34, 587–595 (2007)CrossRef Lopatnikov, S.L., Gama, B.A., Gillespie, J.W.: Modeling the progressive collapse behavior of metal foams. Int. J. Impact Eng. 34, 587–595 (2007)CrossRef
29.
Zurück zum Zitat Zheng, Z.J., Liu, Y.D., Yu, J.L., et al.: Dynamic crushing of cellular materials: continuum-based wave models for the transitional and shock modes. Int. J. Impact Eng. 42, 66–79 (2012)CrossRef Zheng, Z.J., Liu, Y.D., Yu, J.L., et al.: Dynamic crushing of cellular materials: continuum-based wave models for the transitional and shock modes. Int. J. Impact Eng. 42, 66–79 (2012)CrossRef
30.
Zurück zum Zitat Karagiozova, D., Langdon, G.S., Nurick, G.N.: Propagation of compaction waves in metal foams exhibiting strain hardening. Int. J. Solids Struct. 49, 2763–2777 (2012)CrossRef Karagiozova, D., Langdon, G.S., Nurick, G.N.: Propagation of compaction waves in metal foams exhibiting strain hardening. Int. J. Solids Struct. 49, 2763–2777 (2012)CrossRef
31.
Zurück zum Zitat Wang, L.L., Yang, L.M., Ding, Y.Y.: On the energy conservation and critical velocities for the propagation of a “steady-shock” wave in a bar made of cellular material. Acta. Mech. Sin. 29, 420–428 (2013)MathSciNetCrossRefMATH Wang, L.L., Yang, L.M., Ding, Y.Y.: On the energy conservation and critical velocities for the propagation of a “steady-shock” wave in a bar made of cellular material. Acta. Mech. Sin. 29, 420–428 (2013)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Zheng, J., Qin, Q.H., Wang, T.J.: Impact plastic crushing and design of density-graded cellular materials. Mech. Mater. 94, 66–78 (2016)CrossRef Zheng, J., Qin, Q.H., Wang, T.J.: Impact plastic crushing and design of density-graded cellular materials. Mech. Mater. 94, 66–78 (2016)CrossRef
33.
Zurück zum Zitat Gaitanaros, S., Kyriakides, S.: Dynamic crushing of aluminum foams: part II—analysis. Int. J. Solids Struct. 51, 1646–1661 (2014)CrossRef Gaitanaros, S., Kyriakides, S.: Dynamic crushing of aluminum foams: part II—analysis. Int. J. Solids Struct. 51, 1646–1661 (2014)CrossRef
34.
Zurück zum Zitat Sun, Y.L., Li, Q.M., McDonald, S.A., et al.: Determination of the constitutive relation and critical condition for the shock compression of cellular solids. Mech. Mater. 99, 26–36 (2016)CrossRef Sun, Y.L., Li, Q.M., McDonald, S.A., et al.: Determination of the constitutive relation and critical condition for the shock compression of cellular solids. Mech. Mater. 99, 26–36 (2016)CrossRef
35.
Zurück zum Zitat Ding, Y.Y., Wang, S.L., Zheng, Z.J., et al.: Dynamic crushing of cellular materials: a unique dynamic stress-strain state curve. Mech. Mater. 100, 219–231 (2016)CrossRef Ding, Y.Y., Wang, S.L., Zheng, Z.J., et al.: Dynamic crushing of cellular materials: a unique dynamic stress-strain state curve. Mech. Mater. 100, 219–231 (2016)CrossRef
36.
Zurück zum Zitat Zheng, Z.J., Yu, J.L., Li, J.R.: Dynamic crushing of 2D cellular structures: a finite element study. Int. J. Impact Eng. 32, 650–664 (2005)CrossRef Zheng, Z.J., Yu, J.L., Li, J.R.: Dynamic crushing of 2D cellular structures: a finite element study. Int. J. Impact Eng. 32, 650–664 (2005)CrossRef
37.
Zurück zum Zitat Yu, J.L., Wang, P., Liao, S.F., et al.: Local strain and stress calculation methods of irregular honeycombs under dynamic compression. In: Proceedings of the ASME 35th International Conference on Ocean, Offshore and Arctic Engineering, Busan, June 19–24 (2016) Yu, J.L., Wang, P., Liao, S.F., et al.: Local strain and stress calculation methods of irregular honeycombs under dynamic compression. In: Proceedings of the ASME 35th International Conference on Ocean, Offshore and Arctic Engineering, Busan, June 19–24 (2016)
38.
Zurück zum Zitat Liao, S.F., Zheng, Z.J., Yu, J.L.: On the local nature of the strain field calculation method for measuring heterogeneous deformation of cellular materials. Int. J. Solids Struct. 51, 478–490 (2014)CrossRef Liao, S.F., Zheng, Z.J., Yu, J.L.: On the local nature of the strain field calculation method for measuring heterogeneous deformation of cellular materials. Int. J. Solids Struct. 51, 478–490 (2014)CrossRef
Metadaten
Titel
Strain-rate effect on initial crush stress of irregular honeycomb under dynamic loading and its deformation mechanism
verfasst von
Peng Wang
Zhijun Zheng
Shenfei Liao
Jilin Yu
Publikationsdatum
19.10.2017
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 1/2018
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-017-0716-1

Weitere Artikel der Ausgabe 1/2018

Acta Mechanica Sinica 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.