Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 13/2021

23.06.2021

Structural, linear and nonlinear optical properties of Zn@CdO nanostructured thin films: a quantitative comparison with DFT

verfasst von: Z. R. Khan, M. Gandouzi, Abdullah S. Alshammari, M. Bouzidi, Mohd. Shkir, S. Alfaify, Mansour Mohamed

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 13/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents experimental and density functional theory (DFT) investigations of Zn doping role in the Zn@CdO ternary system. Zn doped CdO nanostructures thin films with different Zn concentrations were successfully casted on glass substrates by sol–gel spin coating method. Cubic Zn@CdO structured ternary alloyed nanostructures thin films with 0.0, 1.0, 2.0 and 3.0 wt.% Zn concentrations were obtained. An enhancement in the lateral growth of CdO cauliflower-like nanostructures was observed after Zn addition which leads to a growth of nanostructured films with improved continuity. The effect of Zn doping on the linear optical parameters such as the optical band gap, the absorption index and the refractive index were also investigated. A remarkable blue shift in the band edge was observed as Zn is incorporated into the CdO matrix. In addition, the third order nonlinear optical parameters χ(3) and n2 were calculated and found to be about 2.89 × 10–12–4.33 × 10–14 esu and 2.89 × 10–12–4.33 × 10–14 esu; respectively. A DFT based Wien2k package was utilized to theoretically investigate the lattice parameters, the electronic structure, the absorption index and the refractive index of the Zn@CdO ternary nanoalloys. The role of Zn doping on the aforesaid properties was theoretically investigated for 3.125%, 6.25%, 12.5% and 25% Zn doping concentrations and was compared with the experimentally determined parameters. The combined theoretical and experimental investigations presented herein along with the detailed discussion of the obtained findings would provide a deep understanding of the opto-electronic behavior of the Zn doped CdO nanostructured films as well as their suitability for devices applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat S. Kose, F. Atay, V. Bilgin, I. Akyuz, Int. J. Green Energy 1, 353 (2004)CrossRef S. Kose, F. Atay, V. Bilgin, I. Akyuz, Int. J. Green Energy 1, 353 (2004)CrossRef
3.
Zurück zum Zitat R.K. Gupta, K. Ghosh, R. Patel, P.K. Kahol, J. Alloy. Comp. 509, 4146 (2011)CrossRef R.K. Gupta, K. Ghosh, R. Patel, P.K. Kahol, J. Alloy. Comp. 509, 4146 (2011)CrossRef
4.
Zurück zum Zitat L.J. Heun, J. Korean, Inst. Electr. Electron. Mater. Eng. 25, 632 (2012) L.J. Heun, J. Korean, Inst. Electr. Electron. Mater. Eng. 25, 632 (2012)
5.
Zurück zum Zitat Y.F. Sun, S.B. Liu, F.L. Meng, J.Y. Liu, Z. Jin, L.T. Kong, J.H. Liu, Sensors 12, 2610 (2012)CrossRef Y.F. Sun, S.B. Liu, F.L. Meng, J.Y. Liu, Z. Jin, L.T. Kong, J.H. Liu, Sensors 12, 2610 (2012)CrossRef
6.
Zurück zum Zitat R. Saravanan, H. Shankar, T. Prakash, V. Narayanan, A. Stephen, Mater. Chem. Phys. 125, 277 (2011)CrossRef R. Saravanan, H. Shankar, T. Prakash, V. Narayanan, A. Stephen, Mater. Chem. Phys. 125, 277 (2011)CrossRef
7.
Zurück zum Zitat R. Saravanan, F. Gracia, M.M. Khan, V. Poornima, V.K. Gupta, V. Narayanan, A. Stephen, J. Mol. Liq. 209, 374 (2015)CrossRef R. Saravanan, F. Gracia, M.M. Khan, V. Poornima, V.K. Gupta, V. Narayanan, A. Stephen, J. Mol. Liq. 209, 374 (2015)CrossRef
8.
Zurück zum Zitat B. Saha, R. Thapa, K.K. Chattopadhyay, Solid State Commun. 145, 33 (2008)CrossRef B. Saha, R. Thapa, K.K. Chattopadhyay, Solid State Commun. 145, 33 (2008)CrossRef
9.
Zurück zum Zitat R. Ferro, J. Rodrı́guez, Sol. Energy Mater. Sol. Cells 64, 363 (2000)CrossRef R. Ferro, J. Rodrı́guez, Sol. Energy Mater. Sol. Cells 64, 363 (2000)CrossRef
10.
11.
Zurück zum Zitat I.S. Yahia, G.F. Salem, J. Iqbal, F. Yakuphanoglu, Phys. B 511, 54 (2017)CrossRef I.S. Yahia, G.F. Salem, J. Iqbal, F. Yakuphanoglu, Phys. B 511, 54 (2017)CrossRef
13.
Zurück zum Zitat R. Bairy, S.D. Kulkarni, M.S. Murari, Opt. Laser Technol. 126, 106113 (2020)CrossRef R. Bairy, S.D. Kulkarni, M.S. Murari, Opt. Laser Technol. 126, 106113 (2020)CrossRef
14.
Zurück zum Zitat A.A.M. Farag, M. Cavas, F. Yakuphanoglu, Mater. Chem. Phys. 132, 550 (2012)CrossRef A.A.M. Farag, M. Cavas, F. Yakuphanoglu, Mater. Chem. Phys. 132, 550 (2012)CrossRef
15.
Zurück zum Zitat A.A.M. Farag, A.M. Aboraia, H.E. Ali, V. Ganesh, H.H. Hegazy, A.V. Soldatov, H.Y. Zahran, Y. Khairy, I.S. Yahia, Opt. Mater. 110, 110458 (2020)CrossRef A.A.M. Farag, A.M. Aboraia, H.E. Ali, V. Ganesh, H.H. Hegazy, A.V. Soldatov, H.Y. Zahran, Y. Khairy, I.S. Yahia, Opt. Mater. 110, 110458 (2020)CrossRef
16.
Zurück zum Zitat S. Dugan, M. Mehmet Koç, B. Cos Kun, J. Mol. Struct. 1202, 127235 (2020)CrossRef S. Dugan, M. Mehmet Koç, B. Cos Kun, J. Mol. Struct. 1202, 127235 (2020)CrossRef
17.
Zurück zum Zitat M. Ravikumar, R. Chandramohan, K. Deva Arun Kumar, S. Valanarasu, A. Kathalingam, V. Ganesh, M. Shkir, S. AlFaify, H. Algarni, J. Phys. Chem. Solids 118, 211 (2018)CrossRef M. Ravikumar, R. Chandramohan, K. Deva Arun Kumar, S. Valanarasu, A. Kathalingam, V. Ganesh, M. Shkir, S. AlFaify, H. Algarni, J. Phys. Chem. Solids 118, 211 (2018)CrossRef
18.
Zurück zum Zitat R.N. Bulakhe, C.D. Lokhande, AIP Conf. Proc. 503, 1536 (2013) R.N. Bulakhe, C.D. Lokhande, AIP Conf. Proc. 503, 1536 (2013)
19.
Zurück zum Zitat S.J. Helen, S. Devadason, M. Haris, T. Mahalingam, J. Electron. Mater. 47, 2439 (2018)CrossRef S.J. Helen, S. Devadason, M. Haris, T. Mahalingam, J. Electron. Mater. 47, 2439 (2018)CrossRef
20.
Zurück zum Zitat M. Thirumoorthi, J.T. Joseph Prakash, J. Asian Ceram. Soc. 4, 39 (2016)CrossRef M. Thirumoorthi, J.T. Joseph Prakash, J. Asian Ceram. Soc. 4, 39 (2016)CrossRef
21.
23.
Zurück zum Zitat R. Miloua, F. Miloua, A. Arbaoui, Z. Kebbab, N. Benramdane, Solid State Commun. 144, 5 (2007)CrossRef R. Miloua, F. Miloua, A. Arbaoui, Z. Kebbab, N. Benramdane, Solid State Commun. 144, 5 (2007)CrossRef
24.
Zurück zum Zitat P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, an Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Vienna, 2001) P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, an Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Vienna, 2001)
26.
Zurück zum Zitat S. Cottenier, DFT and the Family of (L)APW-Methods: A Step-by-Step Introduction (University of Ghent, Belgium, 2004) S. Cottenier, DFT and the Family of (L)APW-Methods: A Step-by-Step Introduction (University of Ghent, Belgium, 2004)
27.
29.
Zurück zum Zitat R.J. Deokate, S.M. Pawar, A.V. Moholkar, V.S. Sawant, C.A. Pawar, C.H. Bhosale, K.Y. Rajpure, Appl. Surf. Sci. 254, 2187 (2008)CrossRef R.J. Deokate, S.M. Pawar, A.V. Moholkar, V.S. Sawant, C.A. Pawar, C.H. Bhosale, K.Y. Rajpure, Appl. Surf. Sci. 254, 2187 (2008)CrossRef
30.
Zurück zum Zitat B.D. Cullity, Elements of X-Ray Diffraction. Reading (Addison-Wesley, Boston, 1967) B.D. Cullity, Elements of X-Ray Diffraction. Reading (Addison-Wesley, Boston, 1967)
31.
Zurück zum Zitat C.H. Bhosale, A.V. Kambale, K.Y. Kokate, Mater. Sci. Eng. B 122, 67–71 (2005)CrossRef C.H. Bhosale, A.V. Kambale, K.Y. Kokate, Mater. Sci. Eng. B 122, 67–71 (2005)CrossRef
32.
Zurück zum Zitat R. Danish, F. Ahmed, N. Arshi, M.S. Anwar, B.H. Koo, Trans. Nonferr. Metals Soc. China 24, 152 (2014)CrossRef R. Danish, F. Ahmed, N. Arshi, M.S. Anwar, B.H. Koo, Trans. Nonferr. Metals Soc. China 24, 152 (2014)CrossRef
33.
Zurück zum Zitat Z.V. Popovic, G. Stanisic, D. Stojanovic, Phys. Stat. Sol. 165, 109 (1991)CrossRef Z.V. Popovic, G. Stanisic, D. Stojanovic, Phys. Stat. Sol. 165, 109 (1991)CrossRef
34.
Zurück zum Zitat M. Anitha, N. Anitha, K. Saravanakumar, I. Kulandaisamy, L. Amalraj, Appl. Phys. A 124, 561 (2018)CrossRef M. Anitha, N. Anitha, K. Saravanakumar, I. Kulandaisamy, L. Amalraj, Appl. Phys. A 124, 561 (2018)CrossRef
35.
Zurück zum Zitat J. Tauc, Amorphous and Liquid Semiconductors (Plenium Press, New York, 1974), p. 159CrossRef J. Tauc, Amorphous and Liquid Semiconductors (Plenium Press, New York, 1974), p. 159CrossRef
36.
Zurück zum Zitat Bo. Huang, H.-L. Chu, M.-C. Wang, W.-S. Hwang, C. Liu, X. Zhao, J. Taiwan Inst. Chem. Eng. 80, 842 (2017)CrossRef Bo. Huang, H.-L. Chu, M.-C. Wang, W.-S. Hwang, C. Liu, X. Zhao, J. Taiwan Inst. Chem. Eng. 80, 842 (2017)CrossRef
38.
Zurück zum Zitat F. Yakuphanoglu, M. Kandaz, M.N. Yaraşır, F.B. Şenkal, Electrical transport and optical properties of an organic semiconductor based on phthalocyanine. Phys. B 393, 235 (2007)CrossRef F. Yakuphanoglu, M. Kandaz, M.N. Yaraşır, F.B. Şenkal, Electrical transport and optical properties of an organic semiconductor based on phthalocyanine. Phys. B 393, 235 (2007)CrossRef
39.
Zurück zum Zitat Z.R. Khan, M. Shkir, V. Ganesh, S. AlFaify, I.S. Yahia, H.Y. Zahran, J. Electron. Mater. 47, 5386 (2018)CrossRef Z.R. Khan, M. Shkir, V. Ganesh, S. AlFaify, I.S. Yahia, H.Y. Zahran, J. Electron. Mater. 47, 5386 (2018)CrossRef
40.
Zurück zum Zitat M.S. Kim, K.G. Yim, J.S. Son, J.Y. Leem, Effects of Al concentration on structural and optical properties of Al-doped ZnO thin films. Bull. Korean Chem. Soc. 33, 1235 (2012)CrossRef M.S. Kim, K.G. Yim, J.S. Son, J.Y. Leem, Effects of Al concentration on structural and optical properties of Al-doped ZnO thin films. Bull. Korean Chem. Soc. 33, 1235 (2012)CrossRef
41.
Zurück zum Zitat B.J. Lee, J. Jeong, A study of structural and photoluminescence for Al-doped CdO thin films. J. Spectrosc. 2016, 5127348 (2016)CrossRef B.J. Lee, J. Jeong, A study of structural and photoluminescence for Al-doped CdO thin films. J. Spectrosc. 2016, 5127348 (2016)CrossRef
42.
Zurück zum Zitat K. Usharani, A.R. Balu, V.S. Nagarethinam, M. Suganya, Prog. Nat. Sci. 25, 251 (2015)CrossRef K. Usharani, A.R. Balu, V.S. Nagarethinam, M. Suganya, Prog. Nat. Sci. 25, 251 (2015)CrossRef
43.
Zurück zum Zitat M. Frumar, J. Jedelský, B. Frumarova, T. Wagner, M. Hrdlička, J. Non Cryst. Solids 326, 399 (2003)CrossRef M. Frumar, J. Jedelský, B. Frumarova, T. Wagner, M. Hrdlička, J. Non Cryst. Solids 326, 399 (2003)CrossRef
44.
Zurück zum Zitat C.C. Wang, Empirical relation between the linear and the third order nonlinear optical susceptibilities. Phys. Rev. B 2, 2045 (1970)CrossRef C.C. Wang, Empirical relation between the linear and the third order nonlinear optical susceptibilities. Phys. Rev. B 2, 2045 (1970)CrossRef
45.
Zurück zum Zitat H. Ticha, L. Tichy, J. Optoelectron. Adv. Mater. 4, 381 (2002) H. Ticha, L. Tichy, J. Optoelectron. Adv. Mater. 4, 381 (2002)
46.
Zurück zum Zitat G. Yao, X. An, H. Lei, Y. Fu, W. Wu, Model. Numer. Simul. Mater. Sci. 3, 16 (2013) G. Yao, X. An, H. Lei, Y. Fu, W. Wu, Model. Numer. Simul. Mater. Sci. 3, 16 (2013)
47.
Zurück zum Zitat R. Asahi, A. Wang, J.R. Babcock, N.L. Edleman, A.W. Metz, M.A. Lane, V.P. Dravid, C.R. Kannewurf, A.J. Freeman, T.J. Marks, Thin Solid Films 411, 101 (2002)CrossRef R. Asahi, A. Wang, J.R. Babcock, N.L. Edleman, A.W. Metz, M.A. Lane, V.P. Dravid, C.R. Kannewurf, A.J. Freeman, T.J. Marks, Thin Solid Films 411, 101 (2002)CrossRef
48.
Zurück zum Zitat A. Delin, P. Ravindran, O. Eriksson, J.M. Wills, Int. J. Quantum Chem. 69, 349 (1998)CrossRef A. Delin, P. Ravindran, O. Eriksson, J.M. Wills, Int. J. Quantum Chem. 69, 349 (1998)CrossRef
49.
Zurück zum Zitat M. Gandouzi, Z.R. Khan, A.S. Alshammari, Comput. Mater. Sci. 156, 346 (2019)CrossRef M. Gandouzi, Z.R. Khan, A.S. Alshammari, Comput. Mater. Sci. 156, 346 (2019)CrossRef
50.
51.
Zurück zum Zitat F. Wooten, Optical Properties of Solids (Academic, New York, 1972) F. Wooten, Optical Properties of Solids (Academic, New York, 1972)
Metadaten
Titel
Structural, linear and nonlinear optical properties of Zn@CdO nanostructured thin films: a quantitative comparison with DFT
verfasst von
Z. R. Khan
M. Gandouzi
Abdullah S. Alshammari
M. Bouzidi
Mohd. Shkir
S. Alfaify
Mansour Mohamed
Publikationsdatum
23.06.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 13/2021
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-06372-w

Weitere Artikel der Ausgabe 13/2021

Journal of Materials Science: Materials in Electronics 13/2021 Zur Ausgabe